Grain size modulates volcanic ash retention on crop foliage and potential yield loss

Author:

Ligot NoaORCID,Bogaert Patrick,Biass SébastienORCID,Lobet Guillaume,Delmelle PierreORCID

Abstract

Abstract. Ashfall from volcanic eruptions endangers crop production and food security while jeopardising agricultural livelihoods. As populations in the vicinity of volcanoes continue to grow, strategies to reduce volcanic risks to and impacts on crops are increasingly needed. Current models of crop vulnerability to ash are limited. They also rely solely on ash thickness (or loading) as the hazard intensity metric and fail to reproduce the complex interplay of other volcanic and non-volcanic factors that drive impact. Amongst these, ash retention on crop leaves affects photosynthesis and is ultimately responsible for widespread damage to crops. In this context, we carried out greenhouse experiments to assess how ash grain size, leaf pubescence, and humidity conditions at leaf surfaces influence the retention of ash (defined as the percentage of foliar cover coated with ash) in tomato and chilli pepper plants, two crop types commonly grown in volcanic regions. For a fixed ash mass load (∼570 g m−2), we found that ash retention decreases exponentially with increasing grain size and is enhanced when leaves are pubescent (such as in tomato plants) or when their surfaces are wet. Assuming that leaf area index (LAI) diminishes with ash retention in tomato and chilli pepper plants, we derived a new expression for predicting potential crop yield loss after an ashfall event. We suggest that the measurement of crop LAI in ash-affected areas may serve as an impact metric. Our study demonstrates that quantitative insights into crop vulnerability can be gained rapidly from controlled experiments. We advocate this approach to broaden our understanding of ash–plant interactions and to validate the use of remote sensing methods for assessing crop damage and recovery at various spatial and time scales after an eruption.

Funder

Fonds De La Recherche Scientifique - FNRS

Université Catholique de Louvain

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3