Earthquake vulnerability assessment of the built environment in the city of Srinagar, Kashmir Himalaya, using a geographic information system

Author:

Fayaz Midhat,Romshoo Shakil A.ORCID,Rashid Irfan,Chandra Rakesh

Abstract

Abstract. The study investigates the earthquake vulnerability of buildings in Srinagar, an urban city in the Kashmir Himalaya, India. The city, covering an area of around 246 km2 and divided into 69 municipal wards, is situated in the tectonically active and densely populated mountain ecosystem. Given the haphazard development and high earthquake vulnerability of the city, it is critical to assess the vulnerability of the built environment to inform policy-making for developing effective earthquake risk reduction strategies. Integrating various parameters in a geographic information system (GIS) using the analytical hierarchical process (AHP) and technique for order preference by similarity to an ideal solution (TOPSIS) approaches, the ward-wise vulnerability of the buildings revealed that a total of ∼ 17 km2 area (∼ 7 % area; 23 wards) has very high to high vulnerability, moderate vulnerability affects ∼ 69 km2 of the city area (28 % area; 19 wards), and ∼ 160 km2 area (∼ 65 % area; 27 wards) has vulnerability ranging from very low to low. Overall, the downtown wards are most vulnerable to earthquake damage due to the high risk of pounding, high building density, and narrower roads with little or no open spaces. The modern uptown wards, on the other hand, have lower earthquake vulnerability due to the relatively wider roads and low building density. To build a safe and resilient city for its 1.5 million citizens, the knowledge generated in this study would inform action plans for developing earthquake risk reduction measures, which should include strict implementation of the building codes, retrofitting of the vulnerable buildings, and creating a disaster consciousness among its citizenry.

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences

Reference97 articles.

1. Aghataher, R., Delavar, M. R., Nami, M. H., and Samnay, N.: A fuzzy-AHP decision support system for evaluation of cities vulnerability against earthquakes, World Appl. Sci. J., 3, 66–72, 2008.

2. Agrawal, S. K. and Chourasia, A.: Estimation of seismic vulnerability of building of delhi municipal area, J. Disaster Develop., 1, 169–185, 2007.

3. Ahirwal, A., Gupta, K., and Singh, V.: Effect of irregular plan on seismic vulnerability of reinforced concrete buildings, in: AIP Conference Proceedings (Vol. 2158, No. 1, p. 020012), AIP Publishing LLC, https://doi.org/10.1063/1.5127136, 2019.

4. Ahmad, B., Bhat, M. I., and Bali, B. S.: Historical record of earthquakes in the Kashmir Valley, Himal. Geol., 30, 75–84, 2009.

5. Ahmad, B., Alam, A., Bhat, M. S., Ahmad, S., Shafi, M., and Rasool, R.: Seismic risk reduction through indigenous architecture in Kashmir Valley, Int. J. Disaster Risk Reduc., 21, 110–117, https://doi.org/10.1016/j.ijdrr.2016.11.005, 2017.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3