ACCURACY ASSESSMENT AND CALIBRATION OF LOW-COST AUTONOMOUS LIDAR SENSORS

Author:

Glennie C. L.,Hartzell P. J.

Abstract

Abstract. A number of low-cost, small form factor, high resolution lidar sensors have recently been commercialized in an effort to fill the growing needs for lidar sensors on autonomous vehicles. These lidar sensors often report performance as range precision and angular accuracy, which are insufficient to characterize the overall quality of the point clouds returned by these sensors. Herein, a detailed geometric accuracy analysis of two representative autonomous sensors, the Ouster OSI-64 and the Livox Mid-40, is presented. The scanners were analyzed through a rigorous least squares adjustment of data from the two sensors using planar surface constraints. The analysis attempts to elucidate the overall point cloud accuracy and presence of systematic errors for the sensors over medium (< 40 m) ranges. The Livox Mid-40 sensor performance appears to be in conformance with the product specifications, with a ranging accuracy of approximately 2 cm. No significant systematic geometric errors were found in the acquired Mid-40 point clouds. The Ouster OSI-64 did not perform to the manufacturer specifications, with a ranging accuracy of 5.6 cm, which is nearly twice that stated by the manufacturer. Several of the individual lasers within the OSI-64’s bank of 64 lasers exhibited higher range noise than their counterparts, and examination of the residuals indicate a possible systematic error correlated with the horizontal encoder angle. This suggests that the Ouster laser may benefit from additional geometric calibration. Finally, both sensors suffered from an inability to accurately resolve edges and smaller features such as posts due to their large laser beam divergences.

Publisher

Copernicus GmbH

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Assessment of Slam Lidar - An Accuracy Assessment and Drift Anaylsis of the Leica BLK2GO;IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium;2024-07-07

2. LidPose: Real-Time 3D Human Pose Estimation in Sparse Lidar Point Clouds with Non-Repetitive Circular Scanning Pattern;Sensors;2024-05-26

3. Optimization of Land Area Mapping and Volume Calculations using Drone Lidar Livox Mid-40 Data with the Downsampling Method;BIO Web of Conferences;2024

4. INVESTIGATION OF THE RADIOMETRIC BEHAVIOUR OF A LOW-COST AUTOMOTIVE LIDAR SENSOR;The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences;2023-12-13

5. Joint Camera and LiDAR Risk Analysis;2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW);2023-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3