TOWARDS OBJECT DRIVEN FLOOR PLAN EXTRACTION FROM LASER POINT CLOUD

Author:

Babacan K.,Jung J.,Wichmann A.,Jahromi B. A.,Shahbazi M.,Sohn G.,Kada M.

Abstract

Abstract. During the last years, the demand for indoor models has increased for various purposes. As a provisional step to proceed towards higher dimensional indoor models, powerful and flexible floor plans can be utilised. Therefore, several methods have been proposed that provide automatically generated floor plans from laser point clouds. The prevailing methodology seeks to attain semantic enhancement of a model (e.g. the identification and labelling of its components) built upon already reconstructed (a priori) geometry. In contrast, this paper demonstrates preliminary research on the possibility to directly incorporate semantic knowledge, which is itself derived from the raw data during the extraction, into the geometric modelling process. In this regard, we propose a new method to automatically extract floor plans from raw point clouds. It is based on a hierarchical space partitioning of the data, integrated with primitive selection actuated by object detection. First, planar primitives corresponding to vertical architectural structures are extracted using M-estimator SAmple and Consensus (MSAC). The set of the resulting line segments are refined by a selection process through a novel door detection algorithm, considering optimization of prior information and fitness to the data. The selected lines are used as hyperlines to partition the space into enclosed areas. Finally, a floor plan is extracted from these partitions by Minimum Description Length (MDL) hypothesis ranking. The algorithm is applied on a real mobile laser scanner dataset and the results are evaluated both in terms of door detection and consecutive floor plan extraction.

Publisher

Copernicus GmbH

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3