ESTIMATION OF COTTON AND MAIZE CROP AREA IN PERAMBALUR DISTRICT OF TAMIL NADU USING MULTI-DATE SENTINEL-1A SAR DATA

Author:

Ashmitha Nihar M.,Mohammed Ahamed J.,Pazhanivelan S.,Kumaraperumal R.,Ganesha Raj K.

Abstract

Abstract. Crop classification is a key issue for agricultural monitoring using remote sensing techniques. Synthetic Aperture Radar (SAR) data has an advantage in crop classification because of its all-weather imaging capabilities. The objective of this study was to investigate the capability of SAR data for estimation of cotton and maize area in Perambalur district of Tamil Nadu. The multi-temporal Sentinel-1 SAR data was acquired from 2nd September, 2017 to 24th January, 2018. Both the Vertical-Vertical (VV) and Vertical-Horizontal (VH) polarized data was used. Ground truth data collection was performed for cotton and maize during the vegetative, flowering and harvesting stages. Sixty per cent of the ground truth data were used for training and remaining forty per cent were utilized for validation. The temporal backscattering coefficient (σ0) for cotton and maize were extracted using the training datasets.. The mean backscattering values for cotton crop during the entire cropping period had a range from −11.729 dB to −8.827 dB and from −19.167 dB to −14.186 dB for VV and VH polarization respectively. For maize crop it ranged from −11.248 dB to −8.878 dB and from −19.043 dB to −14.753 dB for VV and VH polarized data respectively. The Spectral Angle Mapper (SAM) and Decision Tree classifier (DT) methods were adopted for cotton and maize area estimation. SAM classified 73259 and 51489 hectares (ha) as cotton and maize respectively in VV polarization. DT classified the area of 61501 and 64530 ha for cotton and maize respectively in VH polarization. The accuracy measures, such as overall accuracy, producer’s accuracy and user’s accuracy and kappa coefficient were estimated. SAM classifier exhibits the overall accuracy of 73.3% for VV Decision tree classifier reported the overall accuracy of 75.0% for VH. It is evident from the present study, that the multi-temporal Sentinel-1 SAR sensor can be well used for the discrimination of cotton and maize crops because of its high temporal resolution which captures the complete phenology of the crops during the cropping period.

Publisher

Copernicus GmbH

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3