ASSESSING THE CONTRIBUTION OF SPECTRAL AND TEMPORAL FEATURES FOR ANNUAL LAND COVER AND CROP TYPE MAPPING

Author:

Karakizi C.,Tsiotas I. A.,Kandylakis Z.,Vaiopoulos A.,Karantzalos K.ORCID

Abstract

Abstract. Freely available satellite image time-series are currently the most exploited data towards land cover mapping. In this work we assess the contribution of spectral and temporal features for the detailed, i.e., with more than thirty classes, land cover and crop type mapping based on annual Sentinel-2 data. As a baseline we employed a datacube consisting of spectral features, i.e., spectral bands and indices from one tile of Sentinel-2A data for the year 2016. Then we formed two different datacubes of reduced dimensions, containing either spectrotemporal or temporal features and performed the same experiments in order to assess their contribution. For the second dataset only spectral features that fulfilled certain temporal conditions were retained, reducing by 40% the initial datacube dimensionality. The third dataset was formed only of temporal features resulting to a reduction of 50%. A random forest classifier was employed for the classification procedure and standard accuracy metrics for the validation. All experiments resulted into high overall accuracy rates of over 90% while rates for average F-score metric exceeded 78% in all cases. The quantitative and qualitative validation indicated that the baseline dataset modestly outperformed the other two of spectrotemporal and temporal features. Insights regarding the influence of spectral differentiation among classes and the impact of their sample size, on the per-class performance are further discussed. The importance of spatial independency for training and testing sets was also demonstrated highlighting the need of following best practises during validation in order to deliver a realistic estimation of the produced map accuracy.

Publisher

Copernicus GmbH

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3