SEMANTIC URBAN MESH SEGMENTATION BASED ON AERIAL OBLIQUE IMAGES AND POINT CLOUDS USING DEEP LEARNING

Author:

Wilk Ł.,Mielczarek D.,Ostrowski W.,Dominik W.,Krawczyk J.

Abstract

Abstract. The use of deep machine learning methods for semantic classification of city mesh models is one of the current trends in geoscience development. Thanks to the thriving development of Convolutional Neural Networks (CNNs) it is now achievable to conduct fully automated process of building aforementioned 3D model by means of photogrammetric techniques and supplement it with additional semantic information obtained by Artificial Intelligence (AI) algorithms. In order to guarantee the comprehensiveness of said information it is essential to use an extensive range of 3D data including oblique aerial imagery and aerial laser scanning (ALS). Such comprehensive 3D mesh models may be later implemented in many Digital Twin class solutions additionally supported with modern GIS systems and its algorithms. To proof the validity of this thesis, the article showcases results of research conducted using deep learning based solutions tested on two datasets - real-world data in the form of oblique aerial images and ALS point clouds acquired in Bordeaux, France using novel Leica CityMapper-1 multisensoral system and large-scale dataset from SUM: A Benchmark Dataset of Semantic Urban Meshes. Both subalgorithms make use of CNNs as its core-feature. To perform accurate classification of oblique aerial scenes PSP-Net architecture accelerated by techniques of transfer learning has been used. Second algorithm destined for ALS point clouds utilizes CNN as well, but in this case implementation is based on proprietary architecture. The results of the experiments demonstrate that the utilizing these two mutually complementary solutions to extract new semantic information for city mesh models in proposed manner compared with the state-of-the-art methods achieves competitive classification performance.

Publisher

Copernicus GmbH

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. GeoSparseNet: A Multi-Source Geometry-Aware CNN for Urban Scene Analysis;Remote Sensing;2024-05-21

2. Oblique Aerial Images: Geometric Principles, Relationships and Definitions;Encyclopedia;2024-02-02

3. Enriched Semantic 3D Point Clouds: An Alternative to 3D City Models for Digital Twin for Cities?;Lecture Notes in Geoinformation and Cartography;2024

4. Large-scale 3D Mesh Data Semantic Segmentation: A Survey;2023 9th International Conference on Big Data and Information Analytics (BigDIA);2023-12-15

5. THE USE OF BREAKLINES OF HYDROGRAPHIC OBJECTS IN THREE-DIMENSIONAL MODELING OF CITIES;The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences;2023-12-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3