Response of export production and dissolved oxygen concentrations in oxygen minimum zones to <i>p</i>CO<sub>2</sub> and temperature stabilization scenarios in the biogeochemical model HAMOCC 2.0
-
Published:2017-02-22
Issue:4
Volume:14
Page:781-797
-
ISSN:1726-4189
-
Container-title:Biogeosciences
-
language:en
-
Short-container-title:Biogeosciences
Author:
Beaty Teresa, Heinze ChristophORCID, Hughlett TaylorORCID, Winguth Arne M. E.
Abstract
Abstract. Dissolved oxygen (DO) concentration in the ocean is an important component of marine biogeochemical cycles and will be greatly altered as climate change persists. In this study a global oceanic carbon cycle model (HAMOCC 2.0) is used to address how mechanisms of oxygen minimum zone (OMZ) expansion respond to changes in CO2 radiative forcing. Atmospheric pCO2 is increased at a rate of 1 % annually and the model is stabilized at 2 ×, 4 ×, 6 ×, and 8 × preindustrial pCO2 levels. With an increase in CO2 radiative forcing, the OMZ in the Pacific Ocean is controlled largely by changes in particulate organic carbon (POC) export, resulting in increased remineralization and thus expanding the OMZs within the tropical Pacific Ocean. A potential decline in primary producers in the future as a result of environmental stress due to ocean warming and acidification could lead to a substantial reduction in POC export production, vertical POC flux, and thus increased DO concentration particularly in the Pacific Ocean at a depth of 600–800 m. In contrast, the vertical expansion of the OMZs within the Atlantic is linked to increases POC flux as well as changes in oxygen solubility with increasing seawater temperature. Changes in total organic carbon and increase sea surface temperature (SST) also lead to the formation of a new OMZ in the western subtropical Pacific Ocean. The development of the new OMZ results in dissolved oxygen concentration of ≤ 50 µmol kg−1 throughout the equatorial Pacific Ocean at 4 times preindustrial pCO2. Total ocean volume with dissolved oxygen concentrations of ≤ 50 µmol kg−1 increases by 2.4, 5.0, and 10.5 % for the 2 ×, 4 ×, and 8 × CO2 simulations, respectively.
Publisher
Copernicus GmbH
Subject
Earth-Surface Processes,Ecology, Evolution, Behavior and Systematics
Reference66 articles.
1. Arakawa, A. and Lamb, V.: Computational design of the basic dynamical processes of the UCLA General Circulation Model, Methods in Computational Physics, 17, 174–267, 1977. 2. Archer, D.: Fate of fossil fuel CO2 in geologic time, J. Geophys. Res.-Oceans, 110, C09S05, https://doi.org/10.1029/2004JC002625, 2005. 3. Archer, D., Eby, M., Brovkin, V., Ridgwell, A., Cao, L., Mikolajewicz, U., Caldeira, K., Matsumoto, K., Munhoven, G., and Montenegro, A.: Atmospheric lifetime of fossil fuel carbon dioxide, Annu. Rev. Earth Planet. Sc., 37, 117–134, https://doi.org/10.1146/annurev.earth.031208.100206, 2009. 4. Beaty-Sykes, T. M.: Effects of climate change and perturbation in biogeochemical cycles on oxygen distribution and ocean acidification, PhD Dissertation, University of Texas, Arlington, 2014. 5. Bopp, L., Le Quéré, C., Heimann, M., Manning, A. C., and Monfray, P.: Climate-induced oceanic oxygen fluxes: Implications for the contemporary carbon budget, Global Biogeochem. Cy., 16, 1022, https://doi.org/10.1029/2001GB001445, 2002.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|