Effect of light on photosynthetic efficiency of sequestered chloroplasts in intertidal benthic foraminifera (<i>Haynesina germanica</i> and <i>Ammonia tepida</i>)

Author:

Jauffrais Thierry,Jesus Bruno,Metzger Edouard,Mouget Jean-Luc,Jorissen Frans,Geslin Emmanuelle

Abstract

Abstract. Some benthic foraminifera have the ability to incorporate functional chloroplasts from diatoms (kleptoplasty). Our objective was to investigate chloroplast functionality of two benthic foraminifera (Haynesina germanica and Ammonia tepida) exposed to different irradiance levels (0, 25, 70 µmol photon m−2 s−1) using spectral reflectance, epifluorescence observations, oxygen evolution and pulse amplitude modulated (PAM) fluorometry (maximum photosystem II quantum efficiency (Fv/Fm) and rapid light curves (RLC)). Our results clearly showed that H. germanica was capable of using its kleptoplasts for more than 1 week while A. tepida showed very limited kleptoplastic ability with maximum photosystem II quantum efficiency (Fv/Fm  =  0.4), much lower than H. germanica and decreasing to zero in only 1 day. Only H. germanica showed net oxygen production with a compensation point at 24 µmol photon m−2 s−1 and a production up to 1000 pmol O2 cell−1 day−1 at 300 µmol photon m−2 s−1. Haynesina germanica Fv/Fm slowly decreased from 0.65 to 0.55 in 7 days when kept in darkness; however, it quickly decreased to 0.2 under high light. Kleptoplast functional time was thus estimated between 11 and 21 days in darkness and between 7 and 8 days at high light. These results emphasize that studies about foraminifera kleptoplasty must take into account light history. Additionally, this study showed that the kleptoplasts are unlikely to be completely functional, thus requiring continuous chloroplast resupply from foraminifera food source. The advantages of keeping functional chloroplasts are discussed but more information is needed to better understand foraminifera feeding strategies.

Funder

Centre National de la Recherche Scientifique

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3