Concentrations, composition, and sources of ice-nucleating particles in the Canadian High Arctic during spring 2016

Author:

Si MengORCID,Evoy ErinORCID,Yun Jingwei,Xi Yu,Hanna Sarah J.,Chivulescu Alina,Rawlings Kevin,Veber Daniel,Platt Andrew,Kunkel DanielORCID,Hoor PeterORCID,Sharma Sangeeta,Leaitch W. Richard,Bertram Allan K.ORCID

Abstract

Abstract. Modelling studies suggest that the climate and the hydrological cycle are sensitive to the concentrations of ice-nucleating particles (INPs). However, the concentrations, composition, and sources of INPs in the atmosphere remain uncertain. Here, we report daily concentrations of INPs in the immersion freezing mode and tracers of mineral dust (Al, Fe, Ti, and Mn), sea spray aerosol (Na+ and Cl−), and anthropogenic aerosol (Zn, Pb, NO3-, NH4+, and non-sea-salt SO42-) at Alert, Canada, during a 3-week campaign in March 2016. In total, 16 daily measurements of INPs are reported. The average INP concentrations measured in the immersion freezing mode were 0.005±0.002, 0.020±0.004, and 0.186±0.040 L−1 at −15, −20, and −25 ∘C, respectively. These concentrations are within the range of concentrations measured previously in the Arctic at ground level or sea level. Mineral dust tracers all correlated with INPs at −25 ∘C (correlation coefficient, R, ranged from 0.70 to 0.76), suggesting that mineral dust was a major contributor to the INP population at −25 ∘C. Particle dispersion modelling suggests that the source of the mineral dust may have been long-range transport from the Gobi Desert. Sea spray tracers were anti-correlated with INPs at −25 ∘C (R=-0.56). In addition, INP concentrations at −25 ∘C divided by mass concentrations of aluminum were anti-correlated with sea spray tracers (R=-0.51 and −0.55 for Na+ and Cl−, respectively), suggesting that the components of sea spray aerosol suppressed the ice-nucleating ability of mineral dust in the immersion freezing mode. Correlations between INPs and anthropogenic aerosol tracers were not statistically significant. These results will improve our understanding of INPs in the Arctic during spring.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3