Average characteristics of the midtail plasma sheet in different dynamic regimes of the magnetosphere

Author:

Dmitrieva N. P.,Sergeev V. A.,Shukhtina M. A.

Abstract

Abstract. We study average characteristics of plasma sheet convection in the middle tail during different magnetospheric states (Steady Magnetospheric Convection, SMC, and substorms) using simultaneous magnetotail (Geotail, 15-35 RE downtail) and solar wind (Wind spacecraft) observations during 3.5 years. (1) A large data set allowed us to obtain the average values of the plasma sheet magnetic flux transfer rate (Ey and directly compare it with the dayside transfer rate (Emod for different magnetospheric states. The results confirm the magnetic flux imbalance model suggested by Russell and McPherron (1973), namely: during SMC periods the day-to-night flux transport rate equals the global Earthward plasma sheet convection; during the substorm growth phase the plasma sheet convection is suppressed on the average by 40%, whereas during the substorm expansion phase it twice exceeds the day-to-night global flux transfer rate. (2) Different types of substorms were revealed. About 1/3 of all substorms considered displayed very weak growth in the tail lobe magnetic field before the onset. For these events the plasma sheet transport was found to be in a balance with the day-to-night flux transfer, as in the SMC events. However, the lobe magnetic field value in these cases was as large as that in the substorms with a classic growth phase just before the onset (both values exceed the average level of the lobe field during the SMC). Also, in both groups similar configurational changes (magnetic field stretching and plasma sheet thinning) were observed before the substorm onset. (3) Superimposed epoch analysis showed that the plasma sheet during the late substorm recovery phase has the characteristics similar to those found during SMC events, the SMC could be a natural magnetospheric state following the substorm.

Publisher

Copernicus GmbH

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geology,Astronomy and Astrophysics

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3