Generation of mesoscale <I>F</I> layer structure and electric fields by the combined Perkins and <I>E<sub>s</sub></I> layer instabilities, in simulations

Author:

Cosgrove R. B.

Abstract

Abstract. The generic equilibrium configuration of the nighttime midlatitude ionosphere consists of an F layer held up against gravity by winds and/or electric fields, and a sporadic E (Es) layer located by a sheared wind field, which experiences the same electric fields as the F layer. This configuration is subject to two large-scale (e.g. >10 km) "layer instabilities": one of the F layer known as the Perkins instability, and another of the Es layer which has been called the Es layer instability. Electric fields on scales larger than (about) 10 km map very efficiently between the Es and F layers, and the two instabilities have a similar geometry, allowing them to interact with one another. As shown through a linear growth rate analysis, the two most important parameters governing the interaction are the relative horizontal velocity between the Es and F layers, and the integrated conductivity ratio ΣH/ΣPF, where ΣH and ΣPF are the field line integrated Hall conductivity of the Es layer, and the field line integrated Pedersen conductivity of the F layer, respectively. For both large and small relative velocities the growth rate was found to be more than double that of the Perkins instability alone, when ΣHΣPF=1.8. However, the characteristic eigenmode varies considerably with relative velocity, and different nonlinear behavior is expected in these two cases. As a follow up to the linear growth rate analysis, we explore in this article the nonlinear evolution of the unstable coupled system subject to a 200 km wavelength initial perturbation of the F layer, using a two-dimensional numerical solution of the two-fluid equations, as a function of relative horizontal velocity and ΣHΣPF. We find that when ΣHΣPF⪝0.5 the Perkins instability is able to control the dynamics and modulate the F layer altitude in 2 to 3 h time. However, the electric fields remain small until the altitude modulation is extremely large, and even then they are not large enough to account for the observations of large midlatitude electric fields. When ΣHΣPF⪞1 the Es layer becomes a major contributor to the F layer dynamics. The Es layer response involves the breaking of a wave, with associated polarization electric fields, which modulate the F layer. Larger electric fields form when the relative velocity between the Es and F layers is large, whereas larger modulations of the F layer altitude occur when the relative velocity is small. In the latter case the F layer modulation grows almost twice as fast (for ΣHΣPF=1) as when no Es layer is present. In the former case the electric fields associated with the Es layer are large enough to explain the observations (~10 mV/m) , but occur over relatively short temporal and spatial scales. In the former case also there is evidence that the F layer structure may present with a southwestward trace velocity induced by Es layer motion.

Publisher

Copernicus GmbH

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geology,Astronomy and Astrophysics

Reference59 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3