Variations of topside ionospheric scale heights over Millstone Hill during the 30-day incoherent scatter radar experiment

Author:

Liu L.,Wan W.,Zhang M.-L.,Ning B.,Zhang S.-R.,Holt J. M.

Abstract

Abstract. A 30-day incoherent scatter radar (ISR) experiment was conducted at Millstone Hill (288.5° E, 42.6° N) from 4 October to 4 November 2002. The altitude profiles of electron density Ne, ion and electron temperature (Ti and Te), and line-of-sight velocity during this experiment were processed to deduce the topside plasma scale height Hp, vertical scale height VSH, Chapman scale height Hm, ion velocity, and the relative altitude gradient of plasma temperature (dTp/dh)/Tp, as well as the F2 layer electron density (NmF2) and height (hmF2). These data are analyzed to explore the variations of the ionosphere over Millstone Hill under geomagnetically quiet and disturbed conditions. Results show that ionospheric parameters generally follow their median behavior under geomagnetically quiet conditions, while the main feature of the scale heights, as well as other parameters, deviated significantly from their median behaviors under disturbed conditions. The enhanced variability of ionospheric scale heights during the storm-times suggests that the geomagnetic activity has a major impact on the behavior of ionospheric scale heights, as well as the shape of the topside electron density profiles. Over Millstone Hill, the diurnal behaviors of the median VSH and Hm are very similar to each other and are not so tightly correlated with that of the plasma scale height Hp or the plasma temperature. The present study confirms the sensitivity of the ionospheric scale heights over Millstone Hill to thermal structure and dynamics. The values of VSH/Hp tend to decrease as (dTp/dh)/Tp becomes larger or the dynamic processes become enhanced.

Publisher

Copernicus GmbH

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geology,Astronomy and Astrophysics

Reference30 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3