Contributions of meteorology and anthropogenic emissions to the trends in winter PM2.5 in eastern China 2013–2018

Author:

Wu Yanxing,Liu RunORCID,Li Yanzi,Dong Junjie,Huang Zhijiong,Zheng Junyu,Liu Shaw Chen

Abstract

Abstract. Multiple linear regression (MLR) models are used to assess the contributions of meteorology/climate and anthropogenic emission control to linear trends of PM2.5 concentration during the period 2013–2018 in three regions in eastern China, namely Beijing–Tianjin–Hebei (BTH), the Yangtze River Delta (YRD), and the Pearl River Delta (PRD). We find that quantitative contributions to the linear trend of PM2.5 derived based on MLR results alone are not credible because a good correlation in the MLR analysis does not imply any causal relationship. As an alternative, we propose that the correlation coefficient should be interpreted as the maximum possible contribution of the independent variable to the dependent variable and the residual should be interpreted as the minimum contribution of all other independent variables. Under the new interpretation, the previous MLR results become self-consistent. We also find that the results of a short-term (2013–2018) analysis are significantly different from those of a long-term (1985–2018) analysis for the period 2013–2018 in which they overlap, indicating that MLR results depend critically on the length of time analyzed. The long-term analysis renders a more precise assessment because of additional constraints provided by the long-term data. We therefore suggest that the best estimates of the contributions of emissions and non-emission processes (including meteorology/climate) to the linear trend in PM2.5 during 2013–2018 are those from the long-term analyses: i.e., emission <51 % and non-emission >49 % for BTH, emission <44 % and non-emission >56 % for YRD, and emission <88 % and non-emission >12 % for PRD.

Funder

National Natural Science Foundation of China

Guangzhou Municipal Science and Technology Project

Special Fund Project for Science and Technology Innovation Strategy of Guangdong Province

Guangdong Innovative and Entrepreneurial Research Team Program

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3