Impact of present and future aircraft NOx and aerosol emissions on atmospheric composition and associated direct radiative forcing of climate

Author:

Terrenoire Etienne,Hauglustaine Didier A.,Cohen Yann,Cozic Anne,Valorso Richard,Lefèvre FranckORCID,Matthes SigrunORCID

Abstract

Abstract. Aviation NOx emissions not only have an impact on global climate by changing ozone and methane levels but also contribute to the deterioration of local air quality. A new version of the LMDZ-INCA global model, including chemistry of both the troposphere and the stratosphere and the sulfate-nitrate-ammonium cycle, is applied to re-evaluate the impact of aircraft NOx and aerosol emissions on climate. The results confirm that the efficiency of NOx to produce ozone is very much dependent on the injection height; it increases with the background methane and NOx concentrations and with decreasing aircraft NOx emissions. The methane lifetime variation is less sensitive to the location of aircraft NOx emissions than the ozone change. The net NOx radiative forcing (RF) (O3+CH4) is largely affected by the revised CH4 RF formula. The ozone positive forcing and the methane negative forcing largely offset each other, resulting in a slightly positive forcing for the present day. However, in the future, the net forcing turns to negative, essentially due to higher methane background concentrations. Additional RFs involving particle formation arise from aircraft NOx emissions since the increased hydroxyl radical (OH) concentrations are responsible for an enhanced conversion of SO2 to sulfate particles. Aircraft NOx emissions also increase the formation of nitrate particles in the lower troposphere. However, in the upper troposphere, increased sulfate concentrations favour the titration of ammonia leading to lower ammonium nitrate concentrations. The climate forcing of aircraft NOx emissions is likely to be small or even switch to negative (cooling), depending on atmospheric NOx or CH4 future background concentrations, or when the NOx impact on sulfate and nitrate particles is considered. However, large uncertainties remain for the NOx net impact on climate and in particular on the indirect forcings associated with aerosols, which are even more uncertain than the other forcings from gaseous species. Hence, additional studies with a range of models are needed to provide a more consolidated view. Nevertheless, our results suggest that reducing aircraft NOx emissions is primarily beneficial for improving air quality.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3