Winter brown carbon over six of China's megacities: light absorption, molecular characterization, and improved source apportionment revealed by multilayer perceptron neural network

Author:

Wang Diwei,Shen ZhenxingORCID,Zhang Qian,Lei Yali,Zhang Tian,Huang Shasha,Sun Jian,Xu Hongmei,Cao Junji

Abstract

Abstract. Brown carbon (BrC) constitutes a large fraction of organic carbon and exhibits strong light absorption properties, thus affecting the global radiation budget. In this study, we investigated the light absorption properties, chemical functional bonds, and sources of BrC in six megacities in China, namely Beijing, Harbin, Xi'an, Chengdu, Guangzhou, and Wuhan. The average values of the BrC light absorption coefficient and the mass absorption efficiency at 365 nm in northern cities were higher than those in southern cities by 2.5 and 1.8 times, respectively, demonstrating the abundance of BrC present in northern China's megacities. Fourier transform infrared (FT-IR) spectra revealed sharp and intense peaks at 1640, 1458–1385, and 1090–1030 cm−1, which were ascribed to aromatic phenols, confirming the contribution of primary emission sources (e.g., biomass burning and coal combustion) to BrC. In addition, we noted peaks at 860, 1280–1260, and 1640 cm−1, which were attributed to organonitrate and oxygenated phenolic groups, indicating that secondary BrC also existed in the six megacities. Positive matrix factorization (PMF) coupled with multilayer perceptron (MLP) neural network analysis was used to apportion the sources of BrC light absorption. The results showed that primary emissions (e.g., biomass burning, tailpipe emissions, and coal combustion) made a major contribution to BrC in the six megacities. However, secondary formation processes made a greater contribution to light absorption in the southern cities (17.9 %–21.2 %) than in the northern cities (2.1 %–10.2 %). These results can provide a basis for the more effective control of BrC to reduce its impacts on regional climates and human health.

Funder

National Natural Science Foundation of China

State Key Laboratory of Loess and Quaternary Geology

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Reference74 articles.

1. Bao, M., Zhang, Y. L., Cao, F., Lin, Y. C., Hong, Y., Fan, M., Zhang, Y., Yang, X., and Xie, F.: Light absorption and source apportionment of water soluble humic-like substances (HULIS) in PM2.5 at Nanjing, China, Environ. Res., 206, 112554, https://doi.org/10.1016/j.envres.2021.112554, 2022.

2. Borlaza, L. J. S., Weber, S., Jaffrezo, J.-L., Houdier, S., Slama, R., Rieux, C., Albinet, A., Micallef, S., Trébluchon, C., and Uzu, G.: Disparities in particulate matter (PM10) origins and oxidative potential at a city scale (Grenoble, France) – Part 2: Sources of PM10 oxidative potential using multiple linear regression analysis and the predictive applicability of multilayer perceptron neural network analysis, Atmos. Chem. Phys., 21, 9719–9739, https://doi.org/10.5194/acp-21-9719-2021, 2021a.

3. Borlaza, L. J. S., Weber, S., Uzu, G., Jacob, V., Cañete, T., Micallef, S., Trébuchon, C., Slama, R., Favez, O., and Jaffrezo, J.-L.: Disparities in particulate matter (PM10) origins and oxidative potential at a city scale (Grenoble, France) – Part 1: Source apportionment at three neighbouring sites, Atmos. Chem. Phys., 21, 5415–5437, https://doi.org/10.5194/acp-21-5415-2021, 2021b.

4. Cao, J. J., Lee, S. C., Ho, K. F., Zou, S. C., Fung, K., Li, Y., Watson, J. G., and Chow, J. C.: Spatial and seasonal variations of atmospheric organic carbon and elemental carbon in Pearl River Delta Region, China, Atmos. Environ., 38, 4447–4456, https://doi.org/10.1016/j.atmosenv.2004.05.016, 2004.

5. Cao, J. J., Wang, Q. Y., Chow, J. C., Watson, J. G., Tie, X. X., Shen, Z. X., Wang, P., and An, Z. S.: Impacts of aerosol compositions on visibility impairment in Xi'an, China, Atmos. Environ., 59, 559–566, https://doi.org/10.1016/j.atmosenv.2012.05.036, 2012.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3