Methane emissions from China: a high-resolution inversion of TROPOMI satellite observations
-
Published:2022-08-26
Issue:16
Volume:22
Page:10809-10826
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Chen Zichong, Jacob Daniel J., Nesser HannahORCID, Sulprizio Melissa P., Lorente AlbaORCID, Varon Daniel J.ORCID, Lu XiaoORCID, Shen Lu, Qu ZhenORCID, Penn Elise, Yu XueyingORCID
Abstract
Abstract. We quantify methane emissions in China and the contributions from different sectors by inverse analysis of 2019 TROPOMI satellite observations of atmospheric methane. The inversion uses as a prior estimate the latest 2014 national sector-resolved anthropogenic emission inventory reported by
the Chinese government to the United Nations Framework Convention on Climate Change (UNFCCC) and thus serves as a direct evaluation of that inventory. Emissions are optimized with a Gaussian mixture model (GMM) at up to 0.25∘×0.3125∘ resolution. The optimization is done analytically assuming log-normally distributed errors on prior emissions. Errors and information content on the optimized estimates are obtained directly from the analytical solution and also through a 36-member inversion ensemble. Our best estimate for total anthropogenic emissions in China is 65.0 (57.7–68.4) Tg a−1, where parentheses indicate the uncertainty range determined by the inversion ensemble. Contributions from individual sectors include 16.6 (15.6–17.6) Tg a−1 for coal, 2.3 (1.8–2.5) for oil, 0.29 (0.23–0.32) for gas, 17.8 (15.1–21.0) for livestock, 9.3 (8.2–9.9) for waste, 11.9 (10.7–12.7) for rice paddies, and 6.7 (5.8–7.1) for other sources. Our estimate is 21% higher than the Chinese inventory reported to the UNFCCC (53.6 Tg a−1), reflecting upward corrections to emissions from oil (+147 %), gas (+61 %), livestock (+37 %), waste (+41 %), and rice paddies (+34 %), but downward correction for coal (−15 %). It is also higher than previous inverse studies (43–62 Tg a−1) that used the much sparser GOSAT satellite observations and were conducted at coarser resolution. We are in particular better able to separate coal and rice emissions. Our higher livestock emissions are attributed largely to northern China where GOSAT has little sensitivity. Our higher waste emissions reflect at least in part a rapid growth in wastewater treatment in China. Underestimate of oil emissions in the UNFCCC report appears to reflect unaccounted-for super-emitting facilities. Gas emissions in China are mostly from distribution, in part because of low emission factors from production and in part because 42 % of the gas is imported. Our estimate of emissions per unit of domestic gas production indicates a low life-cycle loss rate of 1.7 % (1.3 %–1.9 %), which would imply net climate benefits from the current “coal-to-gas” energy transition in China. However, this small loss rate is somewhat misleading considering China's high gas imports, including from Turkmenistan where emission per unit of gas production is very high.
Funder
National Aeronautics and Space Administration
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference96 articles.
1. Alexe, M., Bergamaschi, P., Segers, A., Detmers, R., Butz, A., Hasekamp, O.,
Guerlet, S., Parker, R., Boesch, H., Frankenberg, C., and Scheepmaker, R. A.:
Inverse modelling of CH4 emissions for 2010–2011 using different satellite retrieval products from GOSAT and SCIAMACHY, Atmos. Chem. Phys., 15, 113–133, https://doi.org/10.5194/acp-15-113-2015, 2015. 2. Alvarez, R. A., Pacala, S. W., Winebrake, J. J., Chameides, W. L., and Hamburg, S. P.: Greater focus needed on methane leakage from natural gas
infrastructure, P. Natl. Acad. Sci. USA, 109, 6435-6440,
https://doi.org/10.1073/pnas.1202407109, 2012. 3. Alvarez, R. A., Zavala-Araiza, D., Lyon, D. R., Allen, D. T., Barkley, Z. R.,
Brandt, A. R., Davis, K. J., Herndon, S. C., Jacob, D. J., Karion, A., and Kort, E. A.: Assessment of methane emissions from the US oil and gas supply
chain, Science, 361, 186–188, https://doi.org/10.1126/science.aar7204, 2018. 4. Bergamaschi, P., Houweling, S., Segers, A., Krol, M., Frankenberg, C.,
Scheepmaker, R. A., Dlugokencky, E., Wofsy, S. C., Kort, E. A., Sweeney, C., and Schuck, T.: Atmospheric CH4 in the first decade of the 21st century: Inverse modeling analysis using SCIAMACHY satellite retrievals and NOAA surface measurements, J. Geophys. Res.-Atmos., 118, 7350–7369,
https://doi.org/10.1002/jgrd.50480, 2013. 5. Bocquet, M., Pires, C. A., and Wu, L.: Beyond Gaussian statistical modeling
in geophysical data assimilation, Mon. Weather Rev., 138, 2997–3023, https://doi.org/10.1175/2010MWR3164.1, 2010.
Cited by
37 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|