Significant formation of sulfate aerosols contributed by the heterogeneous drivers of dust surface

Author:

Wang Tao,Liu Yangyang,Cheng Hanyun,Wang Zhenzhen,Fu Hongbo,Chen JianminORCID,Zhang LiwuORCID

Abstract

Abstract. The importance of dust heterogeneous oxidation in the removal of atmospheric SO2 and formation of sulfate aerosols is not adequately understood. In this study, the Fe-, Ti-, and Al-bearing components, Na+, Cl−, K+, and Ca2+ of the dust surface, were discovered to be closely associated with the heterogeneous formation of sulfate. Regression models were then developed to make a reliable prediction of the heterogeneous reactivity based on the particle chemical compositions. Further, the recognized gas-phase, aqueous-phase, and heterogeneous oxidation routes were quantitatively assessed and kinetically compared by combining the laboratory work with a modelling study. In the presence of 55 µg m−3 airborne dust, heterogeneous oxidation accounts for approximately 28.6 % of the secondary sulfate aerosols during nighttime, while the proportion decreases to 13.1 % in the presence of solar irradiation. On the dust surface, heterogeneous drivers (e.g. transition metal constituents, water-soluble ions) are more efficient than surface-adsorbed oxidants (e.g. H2O2, NO2, O3) in the conversion of SO2, particularly during nighttime. Dust heterogeneous oxidation offers an opportunity to explain the missing sulfate source during severe haze pollution events, and its contribution proportion in the complex atmospheric environments could be even higher than the current calculation results. Overall, the dust surface drivers are responsible for the significant formation of sulfate aerosols and have profound impacts on the atmospheric sulfur cycling.

Funder

Ministry of Science and Technology of the People's Republic of China

National Natural Science Foundation of China

Natural Science Foundation of Shanghai

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3