Decoupling impacts of weather conditions on interannual variations in concentrations of criteria air pollutants in South China – constraining analysis uncertainties by using multiple analysis tools

Author:

Lin Yu,Zhang LeimingORCID,Fan Qinchu,Meng He,Gao YangORCID,Gao HuiwangORCID,Yao Xiaohong

Abstract

Abstract. In this study, three methods, i.e., the random forest (RF) algorithm, boosted regression trees (BRTs) and the improved complete ensemble empirical-mode decomposition with adaptive noise (ICEEMDAN), were adopted for investigating emission-driven interannual variations in concentrations of air pollutants including PM2.5, PM10, O3, NO2, CO, SO2 and NO2 + O3 monitored in six cities in South China from May 2014 to April 2021. The first two methods were used to calculate the deweathered hourly concentrations, and the third one was used to calculate decomposed hourly residuals. To constrain the uncertainties in the calculated deweathered or decomposed hourly values, a self-developed method was applied to calculate the range of the deweathered percentage changes (DePCs) of air pollutant concentrations on an annual scale (each year covers May to the next April). These four methods were combined together to generate emission-driven trends and percentage changes (PCs) during the 7-year period. Consistent trends between the RF-deweathered and BRT-deweathered concentrations and the ICEEMDAN-decomposed residuals of an air pollutant in a city were obtained in approximately 70 % of a total of 42 cases (for seven pollutants in six cities), but consistent PCs calculated from the three methods, defined as the standard deviation being smaller than 10 % of the corresponding mean absolute value, were obtained in only approximately 30 % of all the cases. The remaining cases with inconsistent trends and/or PCs indicated large uncertainties produced by one or more of the three methods. The calculated PCs from the deweathered concentrations and decomposed residuals were thus combined with the corresponding range of DePCs calculated from the self-developed method to gain the robust range of DePCs where applicable. Based on the robust range of DePCs, we identified significant decreasing trends in PM2.5 concentration from 2014 to 2020 in Guangzhou and Shenzhen, which were mainly caused by the reduced air pollutant emissions and to a much lesser extent by weather perturbations. A decreasing or probably decreasing emission-driven trend was identified in Haikou and Sanya with inconsistent PCs, and a stable or no trend was identified in Zhanjiang with positive PCs. For O3, a significant increasing trend from 2014 to 2020 was identified in Zhanjiang, Shenzhen, Guangzhou and Haikou. An increasing trend in NO2 + O3 was also identified in Zhanjiang and Guangzhou and an increasing or probably increasing trend in Haikou, suggesting the contributions from enhanced formation of O3. The calculated PCs from using different methods implied that the emission changes in O3 precursors and the associated atmospheric chemistry likely played a dominant role than did the perturbations from varying weather conditions. Results from this study also demonstrated the necessity of combining multiple decoupling methods in generating emission-driven trends in atmospheric pollutants.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hainan Province

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3