Geomorphological and hydrological controls on sediment export in earthquake-affected catchments in the Nepal Himalaya
-
Published:2024-01-16
Issue:1
Volume:12
Page:135-161
-
ISSN:2196-632X
-
Container-title:Earth Surface Dynamics
-
language:en
-
Short-container-title:Earth Surf. Dynam.
Author:
Graf Emma L. S.ORCID, Sinclair Hugh D.ORCID, Attal MikaëlORCID, Gailleton Boris, Adhikari Basanta RajORCID, Baral Bishnu Raj
Abstract
Abstract. Large earthquakes can contribute to mountain growth by building topography but also contribute to mass removal from mountain ranges through widespread mass wasting. On annual to decadal or centennial timescales, large earthquakes also have the potential to significantly alter fluvial sediment dynamics if a significant volume of the sediment generated reaches the fluvial network. In this contribution, we focus on the Melamchi–Indrawati and Bhote Koshi rivers in central Nepal, which have both experienced widespread landsliding associated with the 2015 Gorkha (Nepal) earthquake. Using a time series of high-resolution satellite imagery, we have mapped exposed sediment along the rivers from 2012–2021 to identify zones of active channel deposition and document changes over time. Counter to expectations, we show negligible increases in coarse-sediment accumulation along both river corridors since the Gorkha earthquake. However, an extremely high-concentration flow event on 15 June 2021 caused an approximately 4-fold increase in exposed sediment along a 30 km reach of the channel with up to 12 m of channel aggradation in the Melamchi–Indrawati rivers; this event was localised and did not impact the neighbouring Bhote Koshi catchment. Based on published reports, new helicopter-based photography, and satellite data, we demonstrate that this event was sourced from a localised rainfall event between 4500 and 4800 m and that a significant fraction of the sediment was supplied from sources that were unrelated to the landslides generated by the Gorkha earthquake.
Funder
Natural Environment Research Council
Publisher
Copernicus GmbH
Reference92 articles.
1. Acharya, T. D., Mainali, S. C., Yang, I. T., and Lee, D. H.: Analysis of Jure landslide dam, Sindhupalchowk using GIS and Remote Sensing, International Archives of the Photogrammetry, Remote Sens. Spat. Inform. Sci., 41, 201–203, https://doi.org/10.5194/isprsarchives-XLI-B6-201-2016, 2016. a, b 2. Ao, M., Zhang, L., Dong, Y., Su, L., Shi, X., Balz, T., and Liao, M.: Characterizing the evolution life cycle of the Sunkoshi landslide in Nepal with multi-source SAR data, Sci. Rep., 10, 1–12, https://doi.org/10.1038/s41598-020-75002-y, 2020. a 3. Avouac, J. P.: Dynamic Processes in Extensional and Compressional Settings – Mountain Building: From Earthquakes to Geological Deformation, Treat. Geophys., 6, 377–439, https://doi.org/10.1016/B978-044452748-6.00112-7, 2007. a 4. Avouac, J. P., Meng, L., Wei, S., Wang, T., and Ampuero, J. P.: Lower edge of locked Main Himalayan Thrust unzipped by the 2015 Gorkha earthquake, Nat. Geosci., 8, 708–711, https://doi.org/10.1038/ngeo2518, 2015. a 5. Baskota, S., Khanal, G. P., Bhusal, B., Bhandari, G., and Bhattarai, N.: Investigation of Cause of Disaster and Future Risk around Melamchi-Bhemathang area, Sindhupalchok, Tech. rep., Nepal's Department of Mines and Geology (DMG) and the National Disaster Risk Reduction and Management Authority (NDRRMA), https://doi.org/10.13140/RG.2.2.19824.58883, 2021. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|