Future humidity trends over the western United States in the CMIP5 global climate models and variable infiltration capacity hydrological modeling system

Author:

Pierce D. W.,Westerling A. L.,Oyler J.

Abstract

Abstract. Global climate models predict relative humidity (RH) in the western US will decrease at a rate of about 0.1–0.6 percentage points per decade, albeit with seasonal differences (most drying in spring and summer), geographical variability (greater declines in the interior), stronger reductions for greater anthropogenic radiative forcing, and notable spread among the models. Although atmospheric moisture content increases, this is more than compensated for by higher air temperatures, leading to declining RH. Fine-scale hydrological simulations driven by the global model results should reproduce these trends. It is shown that the MT-CLIM meteorological algorithms used by the Variable Infiltration Capacity (VIC) hydrological model, when driven by daily Tmin, Tmax, and precipitation (a configuration used in numerous published studies), do not preserve the original global model's humidity trends. Trends are biased positive in the interior western US, so that strong RH decreases are changed to weak decreases, and weak decreases are changed to increases. This happens because the MT-CLIM algorithms VIC incorporates infer an overly large positive trend in atmospheric moisture content in this region, likely due to an underestimate of the effect of increasing aridity on RH. The result could downplay the effects of decreasing RH on plants and wildfire. RH trends along the coast have a weak negative bias due to neglect of the ocean's moderating influence. A numerical experiment where the values of Tdew are altered to compensate for the RH error suggests that eliminating the atmospheric moisture bias could, in and of itself, decrease runoff up to 14% in high-altitude regions east of the Sierra Nevada and Cascades, and reduce estimated Colorado River runoff at Lees Ferry up to 4% by the end of the century. It could also increase the probability of large fires in the northern and central US Rocky Mountains by 13 to 60%.

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3