Is bias correction of regional climate model (RCM) simulations possible for non-stationary conditions?

Author:

Teutschbein C.ORCID,Seibert J.ORCID

Abstract

Abstract. In hydrological climate-change impact studies, regional climate models (RCMs) are commonly used to transfer large-scale global climate model (GCM) data to smaller scales and to provide more detailed regional information. Due to systematic and random model errors, however, RCM simulations often show considerable deviations from observations. This has led to the development of a number of correction approaches that rely on the assumption that RCM errors do not change over time. It is in principle not possible to test whether this underlying assumption of error stationarity is actually fulfilled for future climate conditions. In this study, however, we demonstrate that it is possible to evaluate how well correction methods perform for conditions different from those used for calibration with the relatively simple differential split-sample test. For five Swedish catchments, precipitation and temperature simulations from 15 different RCMs driven by ERA40 (the 40 yr reanalysis product of the European Centre for Medium-Range Weather Forecasts (ECMWF)) were corrected with different commonly used bias correction methods. We then performed differential split-sample tests by dividing the data series into cold and warm respective dry and wet years. This enabled us to cross-evaluate the performance of different correction procedures under systematically varying climate conditions. The differential split-sample test identified major differences in the ability of the applied correction methods to reduce model errors and to cope with non-stationary biases. More advanced correction methods performed better, whereas large deviations remained for climate model simulations corrected with simpler approaches. Therefore, we question the use of simple correction methods such as the widely used delta-change approach and linear transformation for RCM-based climate-change impact studies. Instead, we recommend using higher-skill correction methods such as distribution mapping.

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3