Abrupt climate changes of the last deglaciation detected in a Western Mediterranean forest record

Author:

Fletcher W. J.,Sanchez Goñi M. F.,Peyron O.,Dormoy I.

Abstract

Abstract. Abrupt changes in Western Mediterranean climate during the last deglaciation (20 to 6 cal ka BP) are detected in marine core MD95-2043 (Alboran Sea) through the investigation of high-resolution pollen data and pollen-based climate reconstructions by the modern analogue technique (MAT) for annual precipitation (Pann) and mean temperatures of the coldest and warmest months (MTCO and MTWA). Changes in temperate Mediterranean forest development and composition and MAT reconstructions indicate major climatic shifts with parallel temperature and precipitation changes at the onsets of Heinrich stadial 1 (equivalent to the Oldest Dryas), the Bölling-Allerød (BA), and the Younger Dryas (YD). Multi-centennial-scale oscillations in forest development occurred throughout the BA, YD, and early Holocene. Shifts in vegetation composition and (Pann reconstructions indicate that forest declines occurred during dry, and generally cool, episodes centred at 14.0, 13.3, 12.9, 11.8, 10.7, 10.1, 9.2, 8.3 and 7.4 cal ka BP. The forest record also suggests multiple, low-amplitude Preboreal (PB) climate oscillations, and a marked increase in moisture availability for forest development at the end of the PB at 10.6 cal ka BP. Dry atmospheric conditions in the Western Mediterranean occurred in phase with Lateglacial events of high-latitude cooling including GI-1d (Older Dryas), GI-1b (Intra-Allerød Cold Period) and GS-1 (YD), and during Holocene events associated with high-latitude cooling, meltwater pulses and N. Atlantic ice-rafting. A possible climatic mechanism for the recurrence of dry intervals and an opposed regional precipitation pattern with respect to Western-central Europe relates to the dynamics of the westerlies and the prevalence of atmospheric blocking highs. Comparison of radiocarbon and ice-core ages for well-defined climatic transitions in the forest record suggests possible enhancement of marine reservoir ages in the Alboran Sea by 200 years (surface water age 600 years) during the Lateglacial.

Publisher

Copernicus GmbH

Subject

Paleontology,Stratigraphy,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3