Intra-catchment variability of surface saturation – insights from physically based simulations in comparison with biweekly thermal infrared image observations

Author:

Glaser BarbaraORCID,Antonelli MartaORCID,Hopp Luisa,Klaus JulianORCID

Abstract

Abstract. In this study, we explored the spatio-temporal variability of surface saturation within a forested headwater catchment using a combined simulation–observation approach. We simulated the occurrence of surface saturation in the Weierbach catchment (Luxembourg) with the physically based model HydroGeoSphere. We confronted the simulation with thermal infrared images that we acquired during a 2-year mapping campaign for seven distinct riparian areas with weekly to biweekly recurrence frequency. Observations and simulations showed similar saturation dynamics across the catchment. The observed and simulated relation of surface saturation to catchment discharge resembled a power law relationship for all investigated riparian areas but varied to a similar extent, as previously observed between catchments of different morphological and topographical characteristics. The observed spatial patterns and frequencies of surface saturation varied between and within the investigated areas and the model reproduced these spatial variations well. The good performance of the simulation suggested that surface saturation in the Weierbach catchment is largely controlled by exfiltration of groundwater into local topographic depressions. However, the simulated surface saturation contracted faster than observed, the simulated saturation dynamics were less variable between the investigated areas than observed, and the match of simulated and observed saturation patterns was not equally good in all investigated riparian areas. These mismatches between observations and simulation highlight that the intra-catchment variability of surface saturation must also result from factors that were not considered in the model set-up, such as differing subsurface structures or a differing persistence of surface saturation due to local morphological features like perennial springs.

Funder

FP7 People: Marie-Curie Actions

Fonds National de la Recherche Luxembourg

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

Reference53 articles.

1. Ala-aho, P., Rossi, P. M., Isokangas, E., and Kløve, B.: Fully integrated surface–subsurface flow modelling of groundwater–lake interaction in an esker aquifer: Model verification with stable isotopes and airborne thermal imaging, J. Hydrol., 522, 391–406, https://doi.org/10.1016/j.jhydrol.2014.12.054, 2015.

2. Aleina, F. C., Runkle, B. R. K., Kleinen, T., Kutzbach, L., Schneider, J., and Brovkin, V.: Modeling micro-topographic controls on boreal peatland hydrology and methane fluxes, Bio, 12, 5689–5704, https://doi.org/10.5194/bg-12-5689-2015, 2015.

3. Ali, G., Birkel, C., Tetzlaff, D., Soulsby, C., McDonnell, J. J., and Tarolli, P.: A comparison of wetness indices for the prediction of observed connected saturated areas under contrasting conditions, Earth Surf. Proc. Land., 39, 399–413, https://doi.org/10.1002/esp.3506, 2014.

4. Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: Crop evapotranspiration (guidelines for computing crop water requirements), FAO Irrig. Drain. Pap., Rome, Italy, 300 pp., ISBN 92-5-104219-5, 1998.

5. Ambroise, B.: Rôle hydrologique des surfaces saturées en eau dans le basin du Ringelbach à Soultzeren (Hautes-Vosges), France, in: Recherches sur l'Environnement dans la Région, Actes du 1er Colloque Scientifique des Universités du Rhîn Supérieur, edited by: Rentz, O., Streith, J., and Ziliox, L., 620–630, Université Louis Pasteur – Conseil de l'Europe, Strasbourg, 1986.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3