What are the main climate drivers for shrub growth in Northeastern Siberian tundra?
-
Published:2011-05-17
Issue:5
Volume:8
Page:1169-1179
-
ISSN:1726-4189
-
Container-title:Biogeosciences
-
language:en
-
Short-container-title:Biogeosciences
Author:
Blok D.,Sass-Klaassen U.,Schaepman-Strub G.,Heijmans M. M. P. D.,Sauren P.,Berendse F.
Abstract
Abstract. Deciduous shrubs are expected to rapidly expand in the Arctic during the coming decades due to climate warming. A transition towards more shrub-dominated tundra may have large implications for the regional surface energy balance, permafrost stability and carbon storage capacity, with consequences for the global climate system. However, little information is available on the natural long-term shrub growth response to climatic variability. Our aim was to determine the climate factor and time period that are most important to annual shrub growth in our research site in NE-Siberia. Therefore, we determined annual radial growth rates in Salix pulchra and Betula nana shrubs by measuring ring widths. We constructed shrub ring width chronologies and compared growth rates to regional climate and remotely sensed greenness data. Early summer temperature was the most important factor influencing ring width of S. pulchra (Pearson's r = 0.73, p < 0.001) and B. nana (Pearson's r = 0.46, p < 0.001). No effect of winter precipitation on shrub growth was observed. In contrast, summer precipitation of the previous year correlated positively with B. nana ring width (Pearson's r = 0.42, p < 0.01), suggesting that wet summers facilitate shrub growth in the following growing season. S. pulchra ring width correlated positively with peak summer NDVI, despite the small coverage of S. pulchra shrubs (< 5 % surface cover) in our research area. We provide the first climate-growth study on shrubs for Northeast Siberia, the largest tundra region in the world. We show that two deciduous shrub species with markedly different growth forms have a similar growth response to changes in climate. The obtained shrub growth response to climate variability in the past increases our understanding of the mechanisms underlying current shrub expansion, which is required to predict future climate-driven tundra vegetation shifts.
Publisher
Copernicus GmbH
Subject
Earth-Surface Processes,Ecology, Evolution, Behavior and Systematics
Reference72 articles.
1. ACIA: Arctic Climate Impact Assessment, Impacts of a Warming Arctic, Cambridge University Press, Cambridge, United Kingdom, 99–150, 2004. 2. Bär, A., Bräuning, A., and Löffler, J.: Dendroecology of dwarf shrubs in the high mountains of Norway – A methodological approach, Dendrochronologia, 24, 17–27, 2006. 3. Bär, A., Pape, R., Bräuning, A., and Löffler, J.: Growth-ring variations of dwarf shrubs reflect regional climate signals in alpine environments rather than topoclimatic differences, J. Biogeogr., 35, 625–636, 2008. 4. Bigelow, N. H., Brubaker, L. B., Edwards, M. E., Harrison, S. P., Prentice, I. C., Anderson, P. M., Andreev, A. A., Bartlein, P. J., Christensen, T. R., Cramer, W., Kaplan, J. O., Lozhkin, A. V., Matveyeva, N. V., Murray, D. F., McGuire, A. D., Razzhivin, V. Y., Ritchie, J. C., Smith, B., Walker, D. A., Gajewski, K., Wolf, V., Holmqvist, B. H., Igarashi, Y., Kremenetskii, K., Paus, A., Pisaric, M. F. J., and Volkova, V. S.: Climate change and Arctic ecosystems: 1. Vegetation changes north of 55 degrees N between the last glacial maximum, mid-Holocene, and present, J. Geophys. Res.-Atmos., 108, https://doi.org/10.1029/2002jd002558, 2003. 5. Blok, D., Heijmans, M. M. P. D., Schaepman-Strub, G., Kononov, A. V., Maximov, T. C., and Berendse, F.: Shrub expansion may reduce summer permafrost thaw in Siberian tundra, Glob. Change Biol., 16, 1296–1305, 2010.
Cited by
167 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|