Large spread in the representation of compound long-duration dry and hot spells over Europe in CMIP5

Author:

Manning ColinORCID,Widmann MartinORCID,Maraun Douglas,Van Loon Anne F.ORCID,Bevacqua EmanueleORCID

Abstract

Abstract. Long-duration, sub-seasonal dry spells in combination with high temperature extremes during summer have led to extreme impacts on society and ecosystems in the past. Such events are expected to become more frequent due to increasing temperatures as a result of anthropogenic climate change. However, there is little information on how long-duration dry and hot spells are represented in global climate models (GCMs). In this study, we evaluate 33 CMIP5 (coupled model intercomparison project 5) GCMs in their representation of long-duration dry spells and temperatures during dry spells. We define a dry spell as a consecutive number of days with a daily precipitation of less than 1 mm. CMIP5 models tend to underestimate the persistence of dry spells in northern Europe, while a large variability exists between model estimates in central and southern Europe, where models have contrasting biases. Throughout Europe, we also find a large spread between models in their representation of temperature extremes during dry spells. In central and southern Europe this spread in temperature extremes between models is related to the representation of dry spells, where models that produce longer dry spells also produce higher temperatures, and vice versa. Our results indicate that this variability in model estimates is due to model differences and not internal variability. At latitudes between 50–60∘ N, the differences in the representation of persistent dry spells are strongly related to the representation of persistent anticyclonic systems, such as atmospheric blocking and subtropical ridges. Furthermore, models simulating a higher frequency of anticyclonic systems than ERA5 also simulate temperatures in dry spells that are between 1.4, and 2.8 K warmer than models with a lower frequency in these areas. Overall, there is a large spread between CMIP5 models in their representation of long-duration dry and hot events that is due to errors in the representation of large-scale anticyclonic systems in certain parts of Europe. This information is important to consider when interpreting the plausibility of future projections from climate models and highlights the potential value that improvements in the representation of anticyclonic systems may have for the simulation of impactful hazards.

Funder

Horizon 2020

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3