Modelling of UV radiation variations at different time scales

Author:

Borkowski J. L.

Abstract

Abstract. Solar UV radiation variability in the period 1976–2006 is discussed with respect to the relative changes in the solar global radiation, ozone content, and cloudiness. All the variables were decomposed into separate components, representing variations of different time scales, using wavelet multi-resolution decomposition. The response of the UV radiation to the changes in the solar global radiation, ozone content, and cloudiness depends on the time scale, therefore, it seems reasonable to model separately the relation between UV and explanatory variables at different time scales. The wavelet components of the UV series are modelled and summed to obtain the fit of observed series. The results show that the coarser time scale components can be modelled with greater accuracy than fine scale components and the fitted values calculated by this method are in better agreement with observed values than values calculated by the regression method, in which variables were not decomposed. The residual standard error in the case of modelling with the use of wavelets is reduced by 14% in comparison to the regression method without decomposition.

Publisher

Copernicus GmbH

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geology,Astronomy and Astrophysics

Reference25 articles.

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3