Author:
Kovalev D. V.,Smirnov A. P.,Dimant Y. S.
Abstract
Abstract. A novel approach to nonlinear simulations of the Farley-Buneman (FB) instability in the E-region ionosphere is developed. The mathematical model includes a fluid description of electrons and a simplified kinetic description of ions based on a kinetic equation with the Bhatnagar-Gross-Crook (BGK) collision term. This hybrid model takes into account all major factors crucial for development and nonlinear stabilization of the instability (collisional drag forces, ion inertia and Landau damping, dominant electron nonlinearity, etc.). At the same time, these simulations are free of noises caused by the finite number of particles and may require less computer resources than particle-in-cell (PIC) or hybrid – semi-fluid semi-PIC – simulations. First results of 2-D simulations are presented which agree reasonably well with those of previous 2-D PIC simulations. One of the potentially useful applications of the novel computational approach is modeling of the FB instability not far from its threshold.
Subject
Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geology,Astronomy and Astrophysics
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献