Aerosol hygroscopicity at a regional background site (Ispra) in Northern Italy
-
Published:2012-07-02
Issue:13
Volume:12
Page:5703-5717
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Adam M.,Putaud J. P.,Martins dos Santos S.,Dell'Acqua A.,Gruening C.
Abstract
Abstract. This study focuses on the aerosol hygroscopic properties as determined from ground-based measurements and Mie theory. Usually, aerosol ground-based measurements are taken in dry conditions in order to have a consistency within networks. The dependence of the various aerosol optical characteristics (e.g. aerosol absorption, scattering, backscattering or extinction coefficients) on relative humidity has therefore to be established in order to determine their values in the atmosphere, where relative humidity can reach high values. We calculated mean monthly diurnal values of the aerosol hygroscopic growth factor at 90% relative humidity GF(90) based on measurements performed at the atmospheric research station in Ispra (Italy) with a Hygroscopicity Tandem Differential Mobility Analyzer over eight months in 2008 and 2009. Particle hygroscopicity increases with particle dry diameter ranging from 35 to 165 nm for all seasons. We observed a clear seasonal variation in GF(90) for particles larger than 75 nm, and a diurnal cycle in spring and winter for all sizes. For 165 nm particles, GF(90) averages 1.32 ± 0.06. The effect of the particle hygroscopic growth on the aerosol optical properties (scattering, extinction, absorption and backscatter coefficients, asymmetry parameter and backscatter faction) was computed using the Mie theory, based on data obtained from a series of instruments running at our station. We found median enhancement factors (defined as ratios between the values of optical variables at 90% and 0% relative humidity) equal to 1.1, 2.1, 1.7, and 1.8, for the aerosol absorption, scattering, backscattering, and extinction coefficients, respectively. All except the absorption enhancement factors show a strong correlation with the hygroscopic growth factor. The enhancement factors observed at our site are among the lowest observed across the world for the aerosol scattering coefficient, and among the highest for the aerosol backscatter fraction.
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference50 articles.
1. Adam, M., Pahlow, M., Kovalev, V. A., Ondov, J. M., Parlange, M. B., and Nair, N.: Aerosol optical characterization by nephelometer and lidar: The Baltimore Supersite experiment during the Canadian forest fire smoke intrusion, J. Geophys. Res., 109, D16S02, https://doi.org/10.1029/2003JD004047, 2004. 2. Anderson, T. L. and Ogren, J. A.: Determining Aerosol Radiative Properties Using the TSI 3563 Integrating Nephelometer, Aerosol Sci. Tech., 29, 57–69, 1998. 3. Andreae, M. O. and Rosenfeld, D.: Aerosol-cloud-precipitation interactions. Part 1. The nature and sources of cloud-active aerosols, Earth Sci. Rev., 89, 13–41, 2008. 4. Andrews, E., Sheridan, P. J., Fiebig, M., McComiskey, A., Ogren, J. A., Arnott, P., Covert, D., Elleman, R., Gasparini, R., Collins, D., Jonsson, H., Schmid, B., and Wang, J.: Comparison of methods for deriving aerosol asymmetry parameter, J. Geophys. Res., 111, D05S04, https://doi.org/10.1029/2004JD005734, 2006. 5. Bohren, C. F. and Huffman, D. R.: Absorption and scattering of light by small particles, John Wiley & Sons, INC, USA, 1998.
Cited by
37 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|