Long-term evaluation of surface air pollution in CAMSRA and MERRA-2 global reanalyses over Europe (2003–2020)

Author:

Lacima AleksanderORCID,Petetin HervéORCID,Soret AlbertORCID,Bowdalo Dene,Jorba OriolORCID,Chen ZhaoyueORCID,Méndez Turrubiates Raúl F.,Achebak Hicham,Ballester Joan,Pérez García-Pando CarlosORCID

Abstract

Abstract. Over the last century, our societies have experienced a sharp increase in urban population and fossil-fuelled transportation, turning air pollution into a critical issue. It is therefore key to accurately characterize the spatiotemporal variability of surface air pollution in order to understand its effects upon the environment, knowledge that can then be used to design effective pollution reduction policies. Global atmospheric composition reanalyses offer great capabilities towards this characterization through assimilation of satellite measurements. However, they generally do not integrate surface measurements and thus remain affected by significant biases at ground level. In this study, we thoroughly evaluate two global atmospheric composition reanalyses, the Copernicus Atmosphere Monitoring Service (CAMSRA) and the Modern-Era Retrospective Analysis for Research and Applications v2 (MERRA-2), between 2003 and 2020, against independent surface measurements of O3, NO2, CO, SO2 and particulate matter (PM; both PM10 and PM2.5) over the European continent. Overall, both reanalyses present significant and persistent biases for almost all examined pollutants. CAMSRA clearly outperforms MERRA-2 in capturing the spatiotemporal variability of most pollutants, as shown by generally lower biases (all pollutants except for PM2.5), lower errors (all pollutants) and higher correlations (all pollutants except SO2). CAMSRA also outperforms MERRA-2 in capturing the annual trends found in all pollutants (except for SO2). Overall, CAMSRA tends to perform best for O3 and CO, followed by NO2 and PM10, while poorer results are typically found for SO2 and PM2.5. Higher correlations are generally found in autumn and/or winter for reactive gases. Compared to MERRA-2, CAMSRA assimilates a wider range of satellite products which, while enhancing the performance of the reanalysis in the troposphere (as shown by other studies), has a limited impact on the surface. The biases found in both reanalyses are likely explained by a combination of factors, including errors in emission inventories and/or sinks, a lack of surface data assimilation, and their relatively coarse resolution. Our results highlight the current limitations of reanalyses to represent surface pollution, which limits their applicability for health and environmental impact studies. When applied to reanalysis data, bias-correction methodologies based on surface observations should help to constrain the spatiotemporal variability of surface pollution and its associated impacts.

Funder

Horizon 2020

Agencia Estatal de Investigación

AXA Research Fund

Publisher

Copernicus GmbH

Subject

General Medicine

Reference54 articles.

1. Aldabe, J., Elustondo, D., Santamaría, C., Lasheras, E., Pandolfi, M., Alastuey, A., Querol, X., and Santamaría, J. M.: Chemical characterisation and source apportionment of PM2.5 and PM10 at rural, urban and traffic sites in Navarra (North of Spain), Atmos. Res., 102, 191–205, https://doi.org/10.1016/j.atmosres.2011.07.003, 2011. a

2. Ali, M. A., Bilal, M., Wang, Y., Nichol, J. E., Mhawish, A., Qiu, Z., de Leeuw, G., Zhang, Y., Zhan, Y., Liao, K., Almazroui, M., Dambul, R., Shahid, S., and Islam, M. N.: Accuracy assessment of CAMS and MERRA-2 reanalysis PM2.5 and PM10 concentrations over China, Atmos. Environ., 288, 119297, https://doi.org/10.1016/j.atmosenv.2022.119297, 2022. a, b

3. Barré, J., Petetin, H., Colette, A., Guevara, M., Peuch, V.-H., Rouil, L., Engelen, R., Inness, A., Flemming, J., Pérez García-Pando, C., Bowdalo, D., Meleux, F., Geels, C., Christensen, J. H., Gauss, M., Benedictow, A., Tsyro, S., Friese, E., Struzewska, J., Kaminski, J. W., Douros, J., Timmermans, R., Robertson, L., Adani, M., Jorba, O., Joly, M., and Kouznetsov, R.: Estimating lockdown-induced European NO2 changes using satellite and surface observations and air quality models, Atmos. Chem. Phys., 21, 7373–7394, https://doi.org/10.5194/acp-21-7373-2021, 2021. a

4. Bauwens, M., Compernolle, S., Stavrakou, T., Müller, J. F., van Gent, J., Eskes, H., Levelt, P. F., van der A, R., Veefkind, J. P., Vlietinck, J., Yu, H., and Zehner, C.: Impact of Coronavirus Outbreak on NO2 Pollution Assessed Using TROPOMI and OMI Observations, Geophys. Res. Lett., 47, e2020GL087978, https://doi.org/10.1029/2020GL087978, 2020. a

5. Bosilovich, M., Akella, S., Coy, L., Cullather, R., Draper, C., Gelaro, R., Kovach, R., Liu, Q., Molod, A., Norris, P., Wargan, K., Chao, W., Reichle, R., Takacs, L., Vikhliaev, Y., Bloom, S., Collow, A., Firth, S., Labow, G., Partyka, G., Pawson, S., Reale, O., Schubert, S. D., and Suarez, M.: MERRA-2: Initial Evaluation of the Climate, NASA Technical Report Series on Global Modeling and Data Assimilation, 43, 139 pp., https://gmao.gsfc.nasa.gov/pubs/docs/Bosilovich803.pdf (last access: 15 December 2022), 2015. a

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3