Modelling of the photooxidation of toluene: conceptual ideas for validating detailed mechanisms

Author:

Wagner V.,Jenkin M. E.,Saunders S. M.,Stanton J.,Wirtz K,Pilling M. J.

Abstract

Abstract. Toluene photooxidation is chosen as an example to examine how simulations of smog-chamber experiments can be used to unravel shortcomings in detailed mechanisms and to provide information on complex reaction systems that will be crucial for the design of future validation experiments. The mechanism used in this study is extracted from the Master Chemical Mechanism Version 3 (MCM v3) and has been updated with new modules for cresol and g-dicarbonyl chemistry. Model simulations are carried out for a toluene-NOx experiment undertaken at the European Photoreactor (EUPHORE). The comparison of the simulation with the experimental data reveals two fundamental shortcomings in the mechanism: OH production is too low by about 80%, and the ozone concentration at the end of the experiment is over-predicted by 55%. The radical budget was analysed to identify the key intermediates governing the radical transformation in the toluene system. Ring-opening products, particularly conjugated g-dicarbonyls, were identified as dominant radical sources in the early stages of the experiment. The analysis of the time evolution of radical production points to a missing OH source that peaks when the system reaches highest reactivity. First generation products are also of major importance for the ozone production in the system. The analysis of the radical budget suggests two options to explain the concurrent under-prediction of OH and over-prediction of ozone in the model: 1) missing oxidation processes that produce or regenerate OH without or with little NO to NO2 conversion or 2) NO3 chemistry that sequesters reactive nitrogen oxides into stable nitrogen compounds and at the same time produces peroxy radicals. Sensitivity analysis was employed to identify significant contributors to ozone production and it is shown how this technique, in combination with ozone isopleth plots, can be used for the design of validation experiments.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Cited by 61 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3