Surface circulation in the Gulf of Thailand from remotely sensed observations: seasonal and interannual timescales

Author:

Anutaliya ArachapornORCID

Abstract

Abstract. The Gulf of Thailand (GoT), a shallow semi-enclosed basin located in the western equatorial Pacific, undergoes much wind variabilities on both seasonal and interannual timescales that produce complex surface circulation. The local Ekman pumping modifies sea level in the northern GoT, while remote wind forcing influences sea level variability at the GoT western boundary, potentially through the coastal trapped Kelvin waves. The importance of the Ekman current on ageostrophic current is also important; the stronger influence of the Ekman current is found toward the southern part of the GoT. The GoT circulation reverses its direction seasonally following the monsoon wind reversal which is well-captured by the most dominant complex empirical orthogonal function explaining 28 % of the total circulation variance. During the monsoon transition, a strong meridional current along the western boundary that connects to the flow at the GoT southeastern entrance is observed. This implies high exchange between the GoT and the South China Sea and thus modification of the GoT water. On the interannual timescale, the GoT circulation is directly impacted by both the El Niño–Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD). Interestingly, the two climate modes have different spatial influences on the GoT circulation. The IOD dominates the interannual current along the GoT western boundary and the southern boundary of the observing domain (8∘ N), while the ENSO correlates with that in the interior. The results highlight the complex circulation pattern as being contributed by different dynamics over each region of the GoT.

Funder

Burapha University

Publisher

Copernicus GmbH

Subject

Cell Biology,Developmental Biology,Embryology,Anatomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3