The evolution of shipping emissions and the costs of regulation changes in the northern EU area

Author:

Johansson L.,Jalkanen J.-P.ORCID,Kalli J.,Kukkonen J.

Abstract

Abstract. An extensive inventory of marine exhaust emissions is presented in the northern European emission control area (ECA) in 2009 and 2011. The emissions of SOx, NOx, CO2, CO and PM2.5 were evaluated using the Ship Traffic Emission Assessment Model (STEAM). We have combined the information on individual vessel characteristics and position reports generated by the automatic identification system (AIS). The emission limitations from 2009 to 2011 have had a significant impact on reducing the emissions of both SOx and PM2.5. The predicted emissions of SOx originated from IMO (International Maritime Organization)-registered marine traffic have been reduced by 29%, from 320 kt to 231 kt, in the ECA from 2009 to 2011. The corresponding predicted reduction of PM2.5 emissions was 17%, from 72 kt to 61 kt. The highest CO2 and PM2.5 emissions in 2011 were located in the vicinity of the coast of the Netherlands, in the English Channel, near the south-eastern UK and along the busiest shipping lines in the Danish Straits and the Baltic Sea. The changes of emissions and the financial costs caused by various regulative actions since 2005 were also evaluated, based on the increased direct fuel costs. We also simulated the effects and direct costs associated with the forthcoming switch to low-sulfur distillate fuels in 2015. According to the projections for the future, there will be a reduction of 87% in SOx emissions and a reduction of 48% in PM2.5 emissions in 2015, compared with the corresponding shipping emissions in 2011 in the ECA. The corresponding relative increase in fuel costs for all IMO-registered shipping varied between 13% and 69%, depending on the development of the prices of fuels and the use of the sulfur scrubber equipment.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Reference14 articles.

1. Andreasen, A. and Mayer, S.: Use of Seawater Scrubbing for SO2 Removal from Marine Engine Exhaust Gas, Energy Fuels 21, 3274–3279, 2007.

2. BunkerWorld: http://www.bunkerworld.com, last access: 10 January 2013.

3. Buhaug, Ø., Corbett, J. J., Endresen, Ø., Eyring, V., Faber, J., Hanayama, S., Lee, D. S., Lee, D., Lindstad, H., Markowska, A. Z., Mjelde, A., Nelissen, D., Nilsen, J., Pålsson, C., Winebrake, J. J., Wu, W.-Q., and Yoshida, K.: Second IMO GHG study 2009, International Maritime Organization, London, UK, April 2009.

4. Corbett, J. J., Wang, H., and Winebrake, J. J.: The effectiveness and costs of speed reductions on emissions from international shipping, Transportation Research D, Elsevier, 14, 593–598, 2009.

5. Corbett, J. J., Winebrake, J. J., and Green, E. H.: An Assessment of Technologies for reducing Regional Short-Lived Climate Forcers Emitted by Ships with Implications for Arctic Shipping, Carbon Management, 1, 207–225, https://doi.org/10.4155/cmt.10.27, 2010.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3