Estimating the contribution of ion–ion recombination to sub-2 nm cluster concentrations from atmospheric measurements

Author:

Kontkanen J.ORCID,Lehtinen K. E. J.,Nieminen T.ORCID,Manninen H. E.,Lehtipalo K.ORCID,Kerminen V.-M.ORCID,Kulmala M.

Abstract

Abstract. The significance of ion–ion recombination for atmospheric new particle formation is not well quantified. Here we present and evaluate a method for determining the size distribution of recombination products from the size distributions of neutral and charged clusters. Our method takes into account the production of recombination products in the collisions between oppositely charged ions and the loss due to coagulation. Furthermore, unlike previous studies, we also consider the effect of condensational growth on the size distribution of recombination products. We applied our method to the data measured in Hyytiälä, Finland, to estimate the contribution of ion–ion recombination to the concentrations of atmospheric clusters in the size range of 0.9–2.1 nm. We observed that the concentration of recombination products was highest in the size classes between 1.5 and 1.9 nm. The median concentrations of recombination products were between 6 and 69 cm−3 in different size classes, which resulted in a small proportion of all neutral clusters, varying between 0.2 and 13%. When examining the whole size range between 0.9 and 2.1 nm, the median fraction of recombination products of all neutral clusters was only 1.5%. We also investigated how the results change if the effect of condensational growth is neglected. It seems that with that assumption the fragmentation of newly formed recombination products has to be taken into account, or else the concentration of recombination products is overestimated. Overall, we concluded that our method provides reasonable results, which are consistent with the earlier estimates on the contribution of recombination products to atmospheric cluster population in Hyytiälä. Still, in order to determine the size distribution of recombination products more accurately in the future, more precise measurements of the size distribution of atmospheric clusters would be needed.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3