Technical note: Interferences of volatile organic compounds (VOCs) on methane concentration measurements

Author:

Kohl LukasORCID,Koskinen MarkkuORCID,Rissanen Kaisa,Haikarainen Iikka,Polvinen Tatu,Hellén HeidiORCID,Pihlatie MariORCID

Abstract

Abstract. Studies that quantify plant methane (CH4) emission rely on the accurate measurement of small changes in the mixing ratio of CH4 that coincide with much larger changes in the mixing ratio of volatile organic compounds (VOCs). Here, we assessed whether 11 commonly occurring VOCs (e.g. methanol, α- and β-pinene, Δ3-carene) interfered with the quantitation of CH4 by five laser-absorption spectroscopy and Fourier-transformed infrared spectroscopy (FTIR) based CH4 analysers, and quantified the interference of seven compounds on three instruments. Our results showed minimal interference with laser-based analysers and underlined the importance of identifying and compensating for interferences with FTIR instruments. When VOCs were not included in the spectral library, they exerted a strong bias on FTIR-based instruments (64–1800 ppbv apparent CH4 ppmv−1 VOC). Minor (0.7–126 ppbv ppmv−1) interference with FTIR-based measurements were also detected when the spectrum of the interfering VOC was included in the library. In contrast, we detected only minor (<20 ppbv ppmv−1) and transient (< 1 min) VOC interferences on laser-absorption spectroscopy-based analysers. Overall, our results demonstrate that VOC interferences have only minor effects on CH4 flux measurements in soil chambers, but may severely impact stem and shoot flux measurements. Laser-absorption-based instruments are better suited for quantifying CH4 fluxes from plant leaves and stems than FTIR-based instruments; however, significant interferences in shoot chamber measurements could not be excluded for any of the tested instruments. Our results furthermore showed that FTIR can precisely quantify VOC mixing ratios and could therefore provide a method complementary to proton-transfer-reaction mass spectrometry (PTR-MS).

Funder

European Research Council

Biotieteiden ja Ympäristön Tutkimuksen Toimikunta

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3