Historical porosity data in polar firn
-
Published:2020-05-20
Issue:2
Volume:12
Page:1171-1177
-
ISSN:1866-3516
-
Container-title:Earth System Science Data
-
language:en
-
Short-container-title:Earth Syst. Sci. Data
Author:
Fourteau KévinORCID, Arnaud LaurentORCID, Faïn XavierORCID, Martinerie PatriciaORCID, Etheridge David M.ORCID, Lipenkov Vladimir, Barnola Jean-Marc
Abstract
Abstract. In the 1990s, closed and open porosity volumes of firn samples were measured by J.-M. Barnola using the technique of gas pycnometry, on firn from three different polar sites. They are the basis of a parameterization of closed porosity in polar firn, first introduced in Goujon et al. (2003) and used in several firn physics models (e.g., Buizert et al., 2012). However, these data and their processing have not been published in their own right yet. In this short article, we detail how they were processed by J.-M. Barnola and how the closed porosity parameterization was obtained. We show that the original data processing only partially accounts for the presence of reopened bubbles in the samples. Since the proper correction to apply for this effect is hard to estimate, we also processed the data without including a correction for reopened bubbles. Finally, we made these pycnometry data available in order to be used by the glaciology community, notably for the study of polar ice formation and of the composition of gas records in ice cores. They are hosted on the PANGAEA database: https://doi.org/10.1594/PANGAEA.907678 (Fourteau et al., 2019a).
Publisher
Copernicus GmbH
Subject
General Earth and Planetary Sciences
Reference21 articles.
1. Bader, H.: Density of ice as a function of temperature and stress, Cold Regions Research and Engineering Laboratory, US Army Material Command, 1964. a 2. Barnola, J.-M., Raynaud, D., Korotkevich, Y. S., and Lorius, C.: Vostok ice
core provides 160,000-year record of atmospheric CO2, Nature, 329, 408,
https://doi.org/10.1038/329408a0, 1987. a 3. Buizert, C., Martinerie, P., Petrenko, V. V., Severinghaus, J. P., Trudinger,
C. M., Witrant, E., Rosen, J. L., Orsi, A. J., Rubino, M., Etheridge, D. M.,
Steele, L. P., Hogan, C., Laube, J. C., Sturges, W. T., Levchenko, V. A.,
Smith, A. M., Levin, I., Conway, T. J., Dlugokencky, E. J., Lang, P. M.,
Kawamura, K., Jenk, T. M., White, J. W. C., Sowers, T., Schwander, J., and
Blunier, T.: Gas transport in firn: multiple-tracer characterisation and
model intercomparison for NEEM, Northern Greenland, Atmos. Chem. Phys., 12,
4259–4277, https://doi.org/10.5194/acp-12-4259-2012, 2012. a, b, c 4. Etheridge, D. M., Pearman, G. I., and Fraser, P. J.: Changes in
tropospheric methane between 1841 and 1978 from a high accumulation-rate
Antarctic ice core, Tellus B, 44, 282–294,
https://doi.org/10.3402/tellusb.v44i4.15456, 1992. a 5. Etheridge, D. M., Steele, L. P., Langenfelds, R. L., Francey, R. J., Barnola,
J.-M., and Morgan, V. I.: Natural and anthropogenic changes in atmospheric
CO2 over the last 1000 years from air in Antarctic ice and firn, J.
Geophys. Res.-Atmos., 101, 4115–4128, https://doi.org/10.1029/95JD03410, 1996. a
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|