A spatially downscaled sun-induced fluorescence global product for enhanced monitoring of vegetation productivity
-
Published:2020-05-13
Issue:2
Volume:12
Page:1101-1116
-
ISSN:1866-3516
-
Container-title:Earth System Science Data
-
language:en
-
Short-container-title:Earth Syst. Sci. Data
Author:
Duveiller GregoryORCID, Filipponi FedericoORCID, Walther SophiaORCID, Köhler PhilippORCID, Frankenberg ChristianORCID, Guanter LuisORCID, Cescatti AlessandroORCID
Abstract
Abstract. Sun-induced chlorophyll fluorescence (SIF) retrieved from satellite spectrometers can be a highly valuable proxy for photosynthesis. The SIF signal is very small and notoriously difficult to measure, requiring sub-nanometre spectral-resolution measurements, which to date are only available from atmospheric spectrometers sampling at low spatial resolution. For example, the widely used SIF dataset derived from the GOME-2 mission is typically provided in 0.5∘ composites. This paper presents a new SIF dataset based on GOME-2 satellite observations with an enhanced spatial resolution of 0.05∘ and an 8 d time step covering the period 2007–2018. It leverages on a proven methodology that relies on using a light-use efficiency (LUE) modelling approach to establish a semi-empirical relationship between SIF and various explanatory variables derived from remote sensing at higher spatial resolution. An optimal set of explanatory variables is selected based on an independent validation with OCO-2 SIF observations, which are only sparsely available but have a high accuracy and spatial resolution. After bias correction, the resulting downscaled SIF data show high spatio-temporal agreement with the first SIF retrievals from the new TROPOMI mission, opening the path towards establishing a surrogate archive for this promising new dataset. We foresee this new SIF dataset becoming a valuable asset for Earth system science in general and for monitoring vegetation productivity in particular. The dataset is available at https://doi.org/10.2905/21935FFC-B797-4BEE-94DA-8FEC85B3F9E1
(Duveiller et al., 2019).
Publisher
Copernicus GmbH
Subject
General Earth and Planetary Sciences
Reference62 articles.
1. Badgley, G., Field, C. B., and Berry, J. A.: Canopy near-infrared reflectance
and terrestrial photosynthesis, Science Advances, 3, e1602244,
https://doi.org/10.1126/sciadv.1602244,
2017. a, b 2. Baker, N. R.: Chlorophyll fluorescence: a probe of photosynthesis in vivo.,
Annu. Rev. Plant Biol., 59, 89–113,
https://doi.org/10.1146/annurev.arplant.59.032607.092759,
2008. a 3. Byrd, R. H., Lu, P., Nocedal, J., and Zhu, C.: A Limited Memory Algorithm for
Bound Constrained Optimization, SIAM J. Sci. Comput., 16,
1190–1208, https://doi.org/10.1137/0916069,
1995. a 4. Duveiller, G. and Cescatti, A.: Spatially downscaling sun-induced chlorophyll
fluorescence leads to an improved temporal correlation with gross primary
productivity, Remote Sens. Environ., 182, 72–89,
https://doi.org/10.1016/j.rse.2016.04.027,
2016. a, b, c, d, e, f, g, h, i, j, k, l, m 5. Duveiller, G. and Filipponi, F.: GregDuveiller/sif-downscaling-essd: code associated with the paper Duveiller et al. 2020 ESSD (Version v1.0), Zenodo, https://doi.org/10.5281/zenodo.3753521, 2020. a
Cited by
60 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|