Improved chloride quantification in quadrupole aerosol chemical speciation monitors (Q-ACSMs)
-
Published:2020-10-07
Issue:10
Volume:13
Page:5293-5301
-
ISSN:1867-8548
-
Container-title:Atmospheric Measurement Techniques
-
language:en
-
Short-container-title:Atmos. Meas. Tech.
Author:
Tobler Anna K.ORCID, Skiba AlicjaORCID, Wang Dongyu S.ORCID, Croteau Philip, Styszko Katarzyna, Nęcki Jarosław, Baltensperger Urs, Slowik Jay G., Prévôt André S. H.
Abstract
Abstract. Particulate chloride is an important component of fine
particulate matter in marine air masses. Recent field studies also report
elevated concentrations of gas-phase reactive chlorine species and
particulate chloride related to anthropogenic activities. This work focuses
on particulate chloride detection and quantification issues observed for
some quadrupole aerosol chemical speciation monitors (Q-ACSMs) which are
designed for the long-term measurement of ambient aerosol composition. The ACSM
reports particle concentrations based on the difference between measurements
of ambient air (sample mode) and particle-free ambient air (filter mode).
For our long-term campaign in Krakow, Poland, the Q-ACSM reports apparent
negative total chloride concentration for most of the campaign when analyzed
with the default fragmentation table. This is the result of the difference
signal from m∕z 35 (35Cl+) being negative, which dominates over the
positive difference signal from m∕z 36 (H35Cl+). Highly time-resolved
experiments with NH4Cl, NaCl and KCl particles show that the signal
response of m∕z 35 is non-ideal when the signal builds up and decreases
slowly for all three salts, leading to a negative difference measurement. In
contrast, the m∕z 36 signal exhibits a near step-change response for NH4Cl
during the sampling and filter period, resulting in a positive difference
signal. The response of m∕z 36 for NaCl and KCl is not as prompt as for
NH4Cl but still fast enough to have a positive difference signal.
Furthermore, it is shown that this behavior is mostly
independent of vaporizer temperature. Based on these observations, this work presents an
approach to correct the chloride concentration time series by adapting the
standard fragmentation table coupled with a calibration of NH4Cl to
obtain a relative ionization efficiency (RIE) based on the signal at
m∕z 36 (H35Cl+). This correction can be applied to measurements in
environments where chloride is dominated by NH4Cl. Caution should be
exercised when other chloride salts dominate the ambient particulate chloride.
Funder
European Commission
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference27 articles.
1. Allan, J. D., Delia, A. E., Coe, H., Bower, K. N., Alfarra, M. R., Jimenez,
J. L., Middlebrook, A. M., Drewnick, F., Onasch, T. B., Canagaratna, M. R.,
Jayne, J. T., and Worsnop, D. R.: A generalised method for the extraction of
chemically resolved mass spectra from aerodyne aerosol mass spectrometer
data, J. Aerosol Sci., 35, 909–922, https://doi.org/10.1016/j.jaerosci.2004.02.007, 2004. 2. Budisulistiorini, S. H., Canagaratna, M. R., Croteau, P. L., Baumann, K., Edgerton, E. S., Kollman, M. S., Ng, N. L., Verma, V., Shaw, S. L., Knipping, E. M., Worsnop, D. R., Jayne, J. T., Weber, R. J., and Surratt, J. D.: Intercomparison of an Aerosol Chemical Speciation Monitor (ACSM) with ambient fine aerosol measurements in downtown Atlanta, Georgia, Atmos. Meas. Tech., 7, 1929–1941, https://doi.org/10.5194/amt-7-1929-2014, 2014. 3. Chang, S. and Allen, D. T.: Chlorine chemistry in urban atmospheres:
Aerosol formation associated with anthropogenic chlorine emissions in
southeast Texas, Atmos. Environ., 40, 512–523, https://doi.org/10.1016/j.atmosenv.2006.04.070, 2006. 4. Crenn, V., Sciare, J., Croteau, P. L., Verlhac, S., Fröhlich, R., Belis, C. A., Aas, W., Äijälä, M., Alastuey, A., Artiñano, B., Baisnée, D., Bonnaire, N., Bressi, M., Canagaratna, M., Canonaco, F., Carbone, C., Cavalli, F., Coz, E., Cubison, M. J., Esser-Gietl, J. K., Green, D. C., Gros, V., Heikkinen, L., Herrmann, H., Lunder, C., Minguillón, M. C., Močnik, G., O'Dowd, C. D., Ovadnevaite, J., Petit, J.-E., Petralia, E., Poulain, L., Priestman, M., Riffault, V., Ripoll, A., Sarda-Estève, R., Slowik, J. G., Setyan, A., Wiedensohler, A., Baltensperger, U., Prévôt, A. S. H., Jayne, J. T., and Favez, O.: ACTRIS ACSM intercomparison – Part 1: Reproducibility of concentration and fragment results from 13 individual Quadrupole Aerosol Chemical Speciation Monitors (Q-ACSM) and consistency with co-located instruments, Atmos. Meas. Tech., 8, 5063–5087, https://doi.org/10.5194/amt-8-5063-2015, 2015. 5. DeCarlo, P. F., Kimmel, J. R., Trimborn, A., Northway, M. J., Jayne, J. T.,
Aiken, A. C., Gonin, M., Fuhrer, K., Horvath, T., Docherty, K. S., Worsnop,
D. R., and Jimenez, J. L.: Field-deployable, high-resolution, time-of-flight
aerosol mass spectrometer, Anal. Chem., 78, 8281–8289, https://doi.org/10.1021/ac061249n, 2006.
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|