An ensemble of 48 physically perturbed model estimates of the 1∕8° terrestrial water budget over the conterminous United States, 1980–2015
-
Published:2023-07-04
Issue:7
Volume:15
Page:2755-2780
-
ISSN:1866-3516
-
Container-title:Earth System Science Data
-
language:en
-
Short-container-title:Earth Syst. Sci. Data
Author:
Zheng HuiORCID, Fei WenliORCID, Yang Zong-LiangORCID, Wei JiangfengORCID, Zhao Long, Li LingchengORCID, Wang ShuORCID
Abstract
Abstract. Terrestrial water budget (TWB) data over large domains are of high interest for various hydrological applications. Spatiotemporally continuous and physically consistent estimations of TWB rely on land surface models (LSMs). As an augmentation of the operational North American Land Data Assimilation System Phase 2 (NLDAS-2) four-LSM ensemble, this paper describes a dataset simulated from an ensemble of 48 physics configurations of the Noah LSM with multi-physics options (Noah-MP). The 48 Noah-MP physics configurations are selected to give a representative cross-section of commonly used LSMs for parameterizing runoff, atmospheric surface layer turbulence, soil moisture limitation on photosynthesis, and stomatal conductance. The dataset spans from 1980 to 2015 over the conterminous United States (CONUS) at a monthly temporal resolution and a 1/8∘ spatial resolution. The dataset variables include total evapotranspiration and its constituents (canopy evaporation, soil evaporation, and transpiration), runoff (the surface and subsurface components), as well as terrestrial water storage (snow water equivalent, four-layer soil water content from the surface down to 2 m, and the groundwater storage anomaly). The dataset is available at https://doi.org/10.5281/zenodo.7109816 (Zheng et al., 2022). Evaluations carried out in this study and previous investigations show that the ensemble performs well in reproducing the observed terrestrial water storage, snow water equivalent, soil moisture, and runoff. Noah-MP complements the NLDAS models well, and adding Noah-MP consistently improves the NLDAS estimations of the above variables in most areas of CONUS. Besides, the perturbed-physics ensemble facilitates the identification of model deficiencies. The parameterizations of shallow snow, spatially varying groundwater dynamics, and near-surface atmospheric turbulence should be improved in future model versions.
Funder
National Natural Science Foundation of China Beijing Municipal Natural Science Foundation
Publisher
Copernicus GmbH
Subject
General Earth and Planetary Sciences
Reference113 articles.
1. Abolafia-Rosenzweig, R., He, C., Burns, S. P., and Chen, F.: Implementation
and Evaluation of a Unified Turbulence Parameterization throughout the Canopy
and Roughness Sublayer in Noah-MP Snow Simulations, J. Adv.
Model. Earth Sy., 13, e2021MS002665, https://doi.org/10.1029/2021MS002665,
2021. a, b 2. Ajami, N. K., Duan, Q., and Sorooshian, S.: An Integrated Hydrologic
Bayesian Multimodel Combination Framework: Confronting Input,
Parameter, and Model Structural Uncertainty in Hydrologic Prediction, Water
Resour. Res., 43, W01403, https://doi.org/10.1029/2005WR004745, 2007. a 3. Beck, H. E., van Dijk, A. I. J. M., de Roo, A., Dutra, E., Fink, G., Orth, R., and Schellekens, J.: Global evaluation of runoff from 10 state-of-the-art hydrological models, Hydrol. Earth Syst. Sci., 21, 2881–2903, https://doi.org/10.5194/hess-21-2881-2017, 2017. a, b 4. Brutsaert, W.: Evaporation into the Atmosphere: Theory, History,
and Applications, Springer, Dordrecht,
https://doi.org/10.1007/978-94-017-1497-6, 1982. a 5. Burnash, R. J. C., Ferral, R. L., and McGuire, R. A.: A Generalized Streamflow
Simulation System: Conceptual Modeling for Digital Computers, Technical
Report, Joint Federal-State River Forecast Center, U.S. National Weather
Service and California Department of Water Resources, Sacramento,
California, USA, https://searchworks.stanford.edu/view/753303 (last access: 6 February 2016), 1973. a
|
|