WorldCereal: a dynamic open-source system for global-scale, seasonal, and reproducible crop and irrigation mapping

Author:

Van Tricht KristofORCID,Degerickx Jeroen,Gilliams Sven,Zanaga Daniele,Battude Marjorie,Grosu Alex,Brombacher JoostORCID,Lesiv Myroslava,Bayas Juan Carlos LasoORCID,Karanam Santosh,Fritz SteffenORCID,Becker-Reshef Inbal,Franch Belén,Mollà-Bononad BertranORCID,Boogaard HendrikORCID,Pratihast Arun Kumar,Koetz Benjamin,Szantoi ZoltanORCID

Abstract

Abstract. The challenge of global food security in the face of population growth, conflict, and climate change requires a comprehensive understanding of cropped areas, irrigation practices, and the distribution of major commodity crops like maize and wheat. However, such understanding should preferably be updated at seasonal intervals for each agricultural system rather than relying on a single annual assessment. Here we present the European Space Agency-funded WorldCereal system, a global, seasonal, and reproducible crop and irrigation mapping system that addresses existing limitations in current global-scale crop and irrigation mapping. WorldCereal generates a range of global products, including temporary crop extent, seasonal maize and cereal maps, seasonal irrigation maps, seasonal active cropland maps, and model confidence layers providing insights into expected product quality. The WorldCereal product suite for the year 2021 presented here serves as a global demonstration of the dynamic open-source WorldCereal system. Validation of the products was done based on best available reference data per product. A global statistical validation for the temporary crop extent product resulted in user's and producer's accuracies of 88.5 % and 92.1 %, respectively. For crop type, a verification was performed against a newly collected street view dataset (overall agreement 82.5 %) and a limited number of publicly available in situ datasets (reaching minimum agreement of 80 %). Finally, global irrigated-area estimates were derived from available maps and statistical datasets, revealing the conservative nature of the WorldCereal irrigation product. The WorldCereal system provides a vital tool for policymakers, international organizations, and researchers to better understand global crop and irrigation patterns and to inform decision-making related to food security and sustainable agriculture. Our findings highlight the need for continued community efforts such as additional reference data collection to support further development and to push the boundaries for global agricultural mapping from space. The global products are available at https://doi.org/10.5281/zenodo.7875104 (Van Tricht et al., 2023).

Funder

European Space Agency

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3