Drought reconstruction since 1796 CE based on tree-ring widths in the upper Heilongjiang (Amur) River basin in Northeast Asia and its linkage to Pacific Ocean climate variability
-
Published:2023-10-30
Issue:11
Volume:19
Page:2079-2092
-
ISSN:1814-9332
-
Container-title:Climate of the Past
-
language:en
-
Short-container-title:Clim. Past
Author:
Xu Yang, Zhang Heli, Chen FengORCID, Wang Shijie, Hu Mao, Hadad Martín, Roig Fidel
Abstract
Abstract. The economic and environmental impacts of persistent droughts in East Asia are of growing concern, and therefore it is important to study the cyclicity and causes of these regional droughts. The self-calibrating Palmer drought severity index (scPDSI) has been extensively employed to describe the severity of regional drought, and several scPDSI reconstructions based on tree rings have been produced. We compiled a tree-ring chronology for Hailar pine (Pinus sylvestris var. mongolica) from two sites in the Hailar region in the upper Heilongjiang (Amur) River basin. Analysis of the climate response revealed that scPDSI was the primary factor limiting tree ring growth from May to July. The mean May to July scPDSI in the Hailar region since 1796 was reconstructed from the tree-ring width chronology. The results of spatial correlation analysis revealed that the reconstructed scPDSI in this region responded significantly to climate change. Analysis of the synoptic climatology indicated that the drought in the upper Heilongjiang (Amur) River basin is closely related to El Niño–Southern Oscillation (ENSO) and the Silk Road teleconnection. The results of atmospheric water cycle analysis show that water vapor transport processes are the dominant factor in the development of drought in this region.
Funder
National Natural Science Foundation of China
Publisher
Copernicus GmbH
Subject
Paleontology,Stratigraphy,Global and Planetary Change
Reference60 articles.
1. Bao, G., Liu, Y., and Linderholm, H. W.: April–September mean maximum temperature inferred from Hailar pine (Pinus sylvestris var. mongolica) tree rings in the Hulunbuir region, Inner Mongolia, back to 1868 AD, Palaeogeogr. Palaeocl. Palaeoecol., 313, 162–172, https://doi.org/10.1016/j.palaeo.2011.10.017, 2012. 2. Bao, G., Liu, Y., Liu, N., and Linderholm, H. W.: Drought variability in eastern Mongolian Plateau and its linkages to the large-scale climate forcing, Clim. Dynam., 44, 717–733, https://doi.org/10.1007/s00382-014-2273-7, 2015. 3. Brubaker, K. L., Entekhabi, D., and Eagleson, P. S.: Estimation Of Continental Precipitation Recycling, J. Climate, 6, 1077–1089, https://doi.org/10.1175/1520-0442(1993)006<1077:Eocpr>2.0.Co;2, 1993. 4. Burde, G. I. and Zangvil, A.: The estimation of regional precipitation recycling. Part I: Review of recycling models, J. Climate, 14, 2497–2508, https://doi.org/10.1175/1520-0442(2001)014<2497:Teorpr>2.0.Co;2, 2001. 5. Chen, F., Opala-Owczarek, M., Khan, A., Zhang, H. L., Owczarek, P., Chen, Y. P., Ahmed, M., and Chen, F.: Late twentieth century rapid increase in high Asian seasonal snow and glacier-derived streamflow tracked by tree rings of the upper Indus River basin, Environ. Res. Lett., 16, 094055, https://doi.org/10.1088/1748-9326/ac1b5c, 2021.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|