Deep temporal convolutional networks for F10.7 radiation flux short-term forecasting

Author:

Wang LuyaoORCID,Zhang HuaORCID,Zhang XiaoxinORCID,Peng Guangshuai,Li Zheng,Xu Xiaojun

Abstract

Abstract. F10.7, the solar flux at a wavelength of 10.7 cm (F10.7), is often used as an important parameter input in various space weather models and is also a key parameter for measuring the strength of solar activity levels. Therefore, it is valuable to study and forecast F10.7. In this paper, the temporal convolutional network (TCN) approach in deep learning is used to predict the daily value of F10.7. The F10.7 series from 1957 to 2019 are used. The data during 1957–1995 are adopted as the training dataset, the data during 1996–2008 (solar cycle 23) are adopted as the validation dataset, and the data during 2009–2019 (solar cycle 24) are adopted as the test dataset. The leave-one-out method is used to group the dataset for multiple validations. The prediction results for 1–3 d ahead during solar cycle 24 have a high correlation coefficient (R) of 0.98 and a root mean square error (RMSE) of only 5.04–5.18 sfu. The overall accuracy of the TCN forecasts is better than the autoregressive (AR) model (it only takes past values of the F10.7 index as inputs) and the results of the US Space Weather Prediction Center (SWPC) forecasts, especially for 2 and 3 d ahead. In addition, the TCN model is slightly better than other neural network models like the backpropagation (BP) neural network and long short-term memory (LSTM) network in terms of the solar radiation flux F10.7 forecast. The TCN model predicted F10.7 with a lower root mean square error, a higher correlation coefficient, and a better overall model prediction.

Funder

Key Technologies Research and Development Program

National Natural Science Foundation of China

State Key Laboratory of Lunar and Planetary Sciences

Publisher

Copernicus GmbH

Reference30 articles.

1. Aminalragia-Giamini, S., Jiggens, P., Anastasiadis, A., Sandberg, I., Aran, A., Vainio, R., Papadimitriou, C., Papaioannou, A., Tsigkanos, A., Paouris, E., Vasalos, G., Paassilta, M., and Dierckxsens, M.: : Prediction of Solar Proton Event Fluence spectra from their Peak flux spectra, J. Space Weather Spac., 10, 1, https://doi.org/10.1051/swsc/2019043, 2020.

2. Bai, S. J., Kolter, J. Z., and Koltun, V.: An Empirical Evaluation of Generic Convolutional and Recurrent Networks for Sequence Modeling, ArXiv [preprint], https://doi.org/10.48550/arXiv.1803.01271, 19 April 2018.

3. Dieleman, S., van den Oord, A., and Simonyan, K.: The challenge ofrealistic music generation: Modelling raw audio at scale, ArXiv [preprint], https://doi.org/10.48550/arXiv.1806.10474, 26 June 2018.

4. Du, Z.: Forecasting the Daily 10.7 cm Solar Radio Flux Using an Autoregressive Model, Sol. Phys., 295, 125, https://doi.org/10.1007/s11207-020-01689-x, 2020.

5. Government of Canada: Solar radio flux – archive of measurements, Government of Canada [data set], https://spaceweather.gc.ca/forecast-prevision/solar-solaire/solarflux/sx-5-en.php, last access: 9 April 2024.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3