“Blooming” of litter-mixing effects: the role of flower and leaf litter interactions on decomposition in terrestrial and aquatic ecosystems

Author:

Alencar Mery Ingrid Guimarães deORCID,Guariento Rafael D.,Guenet BertrandORCID,Carneiro Luciana S.,Voigt Eduardo L.,Caliman AdrianoORCID

Abstract

Abstract. The diversity effect on decomposition, through the litter-mixing effects plays a central role in determining the nutrient and carbon dynamics in ecosystems. However, the litter-mixing effects are centered on a leaf litter perspective. Important aspects related to intraspecific interaction and biomass concentration are rarely evaluated, even though they could be essential to determine the litter decomposition dynamics. To our knowledge, we introduced a new perspective to evaluate whether and how the interaction between flower and leaf litter affects the occurrence, direction, and magnitude of litter-mixing effects in terrestrial and aquatic ecosystems. We performed laboratory experiments using flower and leaf litter from the yellow trumpet tree Tabebuia aurea (Silva Manso) Benth. and Hook. f. ex. S. Moore as a model. To obtain realistic results, we manipulated various scenarios of flower : leaf litter biomass proportion and measured 13 functional traits. Litter-mixing effects were consistent in both aquatic and terrestrial environments, with faster decomposition of both litter types in mixtures compared to their monocultures (synergistic effects). Litter-mixing effects were stronger in the terrestrial environment and at higher flower : leaf litter biomass proportions. Our results indicate that synergistic outcomes are mainly associated with complementary effects. Flower litter had a higher concentration of labile C compounds, N, P, and K and lower lignin concentrations, representing a labile litter, while leaf litter had a higher concentration of lignin, Ca, Mg, and Na, representing a refractory litter. Our results demonstrate the importance of litter-mixing effects between flower and leaf litter via complementary effects. These results shed light on the secondary consequences of flower litter on decomposition, suggesting that species with high reproductive investment in flower biomass may play an important role in the nutrient and carbon recycling of diverse plant communities, exerting a pivotal role in biogeochemical dynamics.

Funder

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3