Microbial biomass and basal respiration of selected Sub-Antarctic and Antarctic soils in the areas of some Russian polar stations

Author:

Abakumov E.ORCID,Mukhametova N.

Abstract

Abstract. Antarctica is a unique place for soil, biological, and ecological investigations. Soils of Antarctica have been studied intensively during the last century, when different national Antarctic expeditions visited the sixth continent with the aim of investigating nature and the environment. Antarctic investigations are comprised of field surveys mainly in the terrestrial landscapes, where the polar stations of different countries are situated. That is why the main and most detailed soil surveys were conducted in the McMurdo Valleys, Transantarctic Mountains, South Shetland Islands, Larsemann Hills and the Schirmacher Oasis. Our investigations were conducted during the 53rd and 55th Russian Antarctic expeditions in the base of soil pits, and samples were collected in Sub-Antarctic and Antarctic regions. Sub-Antarctic or maritime landscapes are considered to be very different from Antarctic landscapes due to differing climatic and geogenic conditions. Soils of diverse zonal landscapes were studied with the aim of assessing the microbial biomass level, basal respiration rates and metabolic activity of microbial communities. This investigation shows that Antarctic soils are quite diverse in profile organization and carbon content. In general, Sub-Antarctic soils are characterized by more developed humus (sod) organo-mineral horizons as well as by an upper organic layer. The most developed organic layers were revealed in peat soils of King George Island, where its thickness reach, in some cases, was 80 cm. These soils as well as soils formed under guano are characterized by the highest amount of total organic carbon (TOC), between 7.22 and 33.70%. Coastal and continental Antarctic soils exhibit less developed Leptosols, Gleysols, Regolith and rare Ornhitosol, with TOC levels between 0.37 and 4.67%. The metabolic ratios and basal respiration were higher in Sub-Antarctic soils than in Antarctic ones, which can be interpreted as a result of higher amounts of fresh organic remnants in organic and organo-mineral horizons. The soils of King George Island also have higher portions of microbial biomass (max 1.54 mg g−1) compared to coastal (max 0.26 mg g−1) and continental (max 0.22 mg g−1) Antarctic soils. Sub-Antarctic soils differ from Antarctic ones mainly by having increased organic layer thickness and total organic carbon content, higher microbial biomass carbon content, basal respiration, and metabolic activity levels.

Publisher

Copernicus GmbH

Subject

Paleontology,Stratigraphy,Earth-Surface Processes,Geochemistry and Petrology,Geology,Geophysics,Soil Science

Reference34 articles.

1. Abakumov, E. V.: Particle-size distribution in soils of West Antarctica, Eur. Soil Sci., 43, 297–304, 2010a.

2. Abakumov, E. V.: The sources and composition of humus in some soils of West Antarctica, Eur. Soil Sci., 43, 499–508, 2010b.

3. Abakumov, E. V. and Andreev, M. P.: Temperature regime of humus horizons of soil of King-George Island, Western Antarctic, Transactions of Saint-Petersburg University, Ser. 3, 2, 129–133, 2011.

4. Abakumov, E. V. and Krylenkov, V. A.: Soil of Antarctic, Priroda, 3, 58–62, 2011.

5. Abakumov, E. V., Pomelov, V. N., Vlasov, D. Y., and Krylenkov, V. A.: Morphological organization of soils in Western Antarctica, Vestn. St.-Peterb. Univ., Ser. 3, Biol., 3 102–115, 2008 (in Russian).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3