Impact of Atmospheric Stability on Vertical Propagation of Submeso and Coherent Structure in a Dense Amazon Forest

Author:

Cava Daniela,Mortarini LucaORCID,Quaresma Dias Júnior CléoORCID,Brondani Daiane,Acevedo Otavio,Oliveira PabloORCID,Giostra UmbertoORCID,Manzi Antonio Ocimar,Araújo AlessandroORCID,Tsokankunku AnywhereORCID,Sörgel MatthiasORCID

Abstract

<p>Observations of the vertical structure of the turbulent flow in different stability regimes above and within the Amazon Forest at the Amazon Tall Tower Observatory (ATTO) site are presented. The shear length scale at the canopy top together with the coherent turbulent structures time and separation length scale were evaluated to determine influence of stability on the inception and development of the roughness sublayer. Five stability regimes were identified. The definition of an intense table regime allowed the identification of a peculiar condition characterized by low-wind and weak coherent structures confined close to the canopy top and producing negligible transport. Submeso motions dominate the flow dynamics in this regime both above and inside the roughness sublayer.</p><p>The shear length scale increases with decreasing stability, presenting two asymptotes for large unstable and stable stratification and a linear behaviour close to neutral stratification. The coherent structure time and length scales are detected using an original method based on the autocorrelation functions of 5-min subsets of turbulent quantities. The vertical time scale is larger in neutral conditions and decreases for both increasing and decreasing stability, while the separation length scale at the canopy top presents a linear dependence on the shear length scale, whose slope is maximum in neutral conditions and decreases departing from neutrality. A new parameterization describing the dependence of the coherent eddies’ separation length scale on the h/L stability parameter is presented.</p>

Publisher

Copernicus GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3