Climate change adaptation through integrated management of water reuse technologies

Author:

Sangiorgio MatteoORCID,Weber Enrico,Cananzi Davide,Zatarain Salazar JazminORCID,Micotti Marco,Castelletti AndreaORCID

Abstract

The integrated management of water reuse technologies and their coordination with the operations of the other water system components are fundamental to fully exploit the reuse potential. Yet, these technologies are usually designed considering their individual parameters (e.g., efficiency, durability, maintenance costs, energy consumption), more than the integration with traditional water management practices, and the impacts on the final users at the system scale.Here, we adopt a portable framework based on optimal control methods and machine learning to evaluate the cross-sector impacts of water loops. The framework is developed for the Apulia Region, Southern Italy, a drought-prone area characterized by the presence of a complex water distribution network and multiple conflicting users across agricultural districts, industry, and drinking water supply.The robustness of each adaptation strategy is comprehensively investigated through a scenario-based approach, including the analysis of climatic, socio-economic (drinking, irrigation, and industrial water demand pattern), legal (environmental flow constraints), and technological (water reuse implementation) aspects.Results show that the combined effect of climate and socio-economic changes will dramatically affect the Apulia water system, leading to unsustainable pressure on freshwater resources. In addition, the implementation of the environmental flow constraints will further reduce the operation space. Future water deficit is thus expected to increase at half-century (2050-2059) as well as in the long-term (2090-2099), especially under the more extreme climate projection (RCP 8.5).Results also show that water reuse actions remarkably improve the situation, but the effect is only partial and far from entirely closing the gap with the current situation. This means that the specific adaptation actions here adopted are not sufficient and that it is necessary to further promote the spread of the reuse technologies and increase their efficiency.The proposed framework is a decision support system that aims at assisting policy-makers in the transition to a circular water economy by integrating water management and treatment-reuse technologies.

Publisher

Copernicus GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3