Tectonic evolution of the Mediterranean region from a global plate kinematics perspective: insights from a new deformable tectonic model

Author:

Agostini SimoneORCID,Otto Simon,Watson John,Howgate Roy

Abstract

<p>The tectonic evolution of the Mediterranean is well studied, but the models often cover a limited period of geological time and are not always placed in a wider context. Its evolution is linked to the surrounding African and Eurasian continents and their relative movements.</p><p>A new fully deformable tectonic model of the Mediterranean has been created as part of a proprietary plate model. This work has led to the identification of key global tectonic events influencing the development of the Mediterranean from the Early Permian to the present day. This first fully-deformable plate model of the Mediterranean enables to account for the shortening and extension that occurred in the area at a temporal resolution of 1 Ma. In most available plate models, plates are rigidly rotated back to their paleo-position, meaning they preserve their present-day size and shape. In some recent papers, the extent of deformation has been illustrated for selected time-slices, but these models cannot be considered to be ‘deformable’ because the deformation is not modelled in a continuous manner.</p><p>Following Hercynian orogenesis and until the break-up of Pangea, the Mediterranean was dominated by extensional tectonics along its southern margin, as a series small continental blocks rifted from the northern margin of Gondwana. The opening of the Central Atlantic in the Late Triassic-Early Jurassic led to displacement between Eurasia and Africa south of Iberia and the development of the Alpine Tethys, as the Atlantic initially propagated northwards to the east of Iberia. Rotation of Africa caused by the opening of the South Atlantic in the Late Jurassic-Early Cretaceous led to a ‘jump’ in spreading to the west, at the Iberia-Newfoundland margin. These larger scale plate motions overprinted the more local impacts of continued extension along the northern margin of Africa (e.g. Pindos Ocean). Opening of the North Atlantic once again changed the relative motion of Eurasia and Africa, and initiated a period of oceanic subduction and collision that culminated in the Alpine orogeny. Crucial to this story is the paleo-position of Apulia/Adria, which remained attached to Africa and was able to act as an indenter into Eurasia during the Alpine compression. Evidence for this connection will be presented and discussed.</p><p> </p><p> </p>

Publisher

Copernicus GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3