Woody Biomass for the Developing Bioeconomy, a Billion-ton Report Update

Author:

Davis Maggie,Langholtz Matthew

Abstract

In the pursuit of net-zero targets, the United States Department of Energy releases the fourth in a series of national biomass resource assessments. Building on the studies conducted in 2005, 2011, and 2016, the Billion-ton 2023 (BT23) report, provides an advancement in the understanding of biomass resources in terms of quantity, spatial distribution, and economic accessibility. The goals of this report are to update to latest available input data (e.g., costs, yields, and economic inputs) and ensure equitable access to the latest biomass resource data and that results are findable, accessible, interoperable, and reusable (FAIR) through a data new portal. The assessment unveils nuanced regional variations in biomass availability, ranging from the immediate potential of forest wastes to the maturation of the market for woody energy crops cultivated on agricultural land. This presentation provides an assessment of renewable carbon resources potentially available from the forested and agricultural land bases in the CONUS. The analysis of biomass resources extends to forested landscapes, assessed using the Forestry Sustainability and Economic Analysis Model (ForSEAM). Additional biomass resources on agricultural land are modeled using the Policy Analysis System Model (POLYSYS), a partial-equilibrium linear programming model with a focus on the agricultural producer response. In collaboration with the U.S. Forest Service (USDA-FS), waste-based woody resources are assessed using Forest Inventory and Analysis (FIA) data and the Bioregional Inventory Originated Simulation Under Management (BioSUM) model. BioSUM models two case studies to determine the potential for trees and other waste resources to be harvested from forests, fostering resilience against the growing threat of wildfires. Throughout these analyses, sustainability constraints are incorporated including the net regeneration of forested stands, limitations on harvesting on steep slopes, and other good practices that would need to be applied based on local conditions. By providing detailed insights into woody biomass suitability for energy production, this research lays the groundwork for near-term woody biomass resource potential and a mature-market potential contributing to a developing bioeconomy. This comprehensive analysis underscores the pivotal role of biomass resources in steering the U.S. toward net-zero targets.

Publisher

Copernicus GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3