Responses of surface ozone to future agricultural ammonia emissions and subsequent nitrogen deposition through terrestrial ecosystem changes
-
Published:2021-12-03
Issue:23
Volume:21
Page:17743-17758
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Liu XueyingORCID, Tai Amos P. K.ORCID, Fung Ka MingORCID
Abstract
Abstract. With the rising food demands from the future world population, more intense agricultural activities are expected to cause substantial perturbations to the global nitrogen cycle, aggravating surface air pollution and imposing stress on terrestrial ecosystems. Much less studied, however, is how the terrestrial ecosystem changes induced by agricultural nitrogen deposition may modify biosphere–atmosphere exchange and further exert secondary feedback effects on global air quality. Here we examined the responses of surface ozone air quality to terrestrial ecosystem changes caused by year 2000 to year 2050 changes in agricultural ammonia emissions and the subsequent nitrogen deposition by asynchronously coupling between the land and atmosphere components within the Community Earth System Model framework. We found that global gross primary production is enhanced by 2.1 Pg C yr−1, following a 20 % (20 Tg N yr−1) increase in global nitrogen deposition by the end of the year 2050 in response to rising agricultural ammonia emissions. Leaf area index was simulated to be higher by up to 0.3–0.4 m2 m−2 over most tropical grasslands
and croplands and 0.1–0.2 m2 m−2 across boreal and temperate
forests at midlatitudes. Around 0.1–0.4 m increases in canopy height were
found in boreal and temperate forests, and there were ∼0.1 m increases in tropical grasslands and croplands. We found that these vegetation changes could lead to surface ozone changes by ∼0.5 ppbv (part per billion by volume) when prescribed meteorology was used (i.e., large-scale meteorological responses to terrestrial changes were not allowed), while surface ozone could typically be modified by 2–3 ppbv when meteorology was dynamically simulated in response to vegetation changes. Rising soil NOx emissions, from 7.9 to 8.7 Tg N yr−1, could enhance surface ozone by 2–3 ppbv with both prescribed and dynamic meteorology. We, thus, conclude that, following enhanced nitrogen deposition, the modification of the meteorological environment induced by vegetation changes and soil biogeochemical changes are the more important pathways that can modulate future ozone pollution, representing a novel linkage between agricultural activities and ozone air quality.
Funder
Research Grants Council, University Grants Committee National Natural Science Foundation of China
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference64 articles.
1. Alexandratos, N. and Bruinsma, J.: World agriculture towards 2030/2050: the
2012 revision, ESA working paper No. 12-03, Food and Agriculture Organization, Rome, 2012. 2. Behera, S. N., Sharma, M., Aneja, V. P., and Balasubramanian, R.: Ammonia in
the atmosphere: a review on emission sources, atmospheric chemistry and
deposition on terrestrial bodies, Environ. Sci. Pollut. Res. Int., 20,
8092–8131, https://doi.org/10.1007/s11356-013-2051-9, 2013. 3. Bittman, S. and Mikkelsen, R.: Ammonia emissions from agricultural
operations: livestock, Better Crops, 93, 28–31, 2009. 4. Bonan, G.: Ecological Climatology, 3rd edn., Cambridge University Press, Cambridge, United Kingdom, 2016. 5. Bonan, G. B., Lawrence, P. J., Oleson, K. W., Levis, S., Jung, M.,
Reichstein, M., Lawrence, D. M., and Swenson, S. C.: Improving canopy
processes in the Community Land Model version 4 (CLM4) using global flux
fields empirically inferred from FLUXNET data, J. Geophys. Res.-Biogeo.,
116, G02014, https://doi.org/10.1029/2010jg001593, 2011.
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|