Impacts of emission changes in China from 2010 to 2017 on domestic and intercontinental air quality and health effect

Author:

Zhang YuqiangORCID,Shindell DrewORCID,Seltzer Karl,Shen Lu,Lamarque Jean-FrancoisORCID,Zhang Qiang,Zheng BoORCID,Xing Jia,Jiang ZheORCID,Zhang LeiORCID

Abstract

Abstract. China has experienced dramatic changes in emissions since 2010, which accelerated following the implementation of the Clean Air Action program in 2013. These changes have resulted in significant air quality improvements that are reflected in observations from both surface networks and satellite observations. Air pollutants, such as PM2.5, surface ozone, and their precursors, have long enough lifetimes in the troposphere to be easily transported downwind. Emission changes in China will thus not only change the domestic air quality but will also affect the air quality in other regions. In this study, we use a global chemistry transport model (CAM-chem) to simulate the influence of Chinese emission changes from 2010 to 2017 on both domestic and foreign air quality. We then quantify the changes in air-pollution-associated (including both PM2.5 and O3) premature mortality burdens at regional and global scales. Within our simulation period, the population-weighted annual PM2.5 concentration in China peaks in 2011 (94.1 µg m−3) and decreases to 69.8 µg m−3 by 2017. These estimated national PM2.5 concentration changes in China are comparable with previous studies using fine-resolution regional models, though our model tends to overestimate PM2.5 from 2013 to 2017 when evaluated with surface observations. Relative to 2010, emission changes in China increased the global PM2.5-associated premature mortality burdens through 2013, among which a majority of the changes (∼ 93 %) occurred in China. The sharp emission decreases after 2013 generated significant benefits for human health. By 2017, emission changes in China reduced premature deaths associated with PM2.5 by 108 800 (92 800–124 800) deaths per year globally, relative to 2010, among which 92 % were realized in China. In contrast, the population-weighted, annually averaged maximum daily 8 h ozone concentration peaked in 2014 and did not reach 2010 levels by 2017. As such, O3 generated nearly 8500 (6500–9900) more premature deaths per year in 2017 compared to 2010. Downwind regions, such as South Korea, Japan, and the United States, generally experienced O3 improvements following 2013 due to the decreased export of ozone and its precursors. Overall, we conclude that the sharp emission reductions in China over the past decade have generated substantial benefits for air quality that have reduced premature deaths associated with air pollution at a global scale.

Funder

Goddard Institute for Space Studies

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Reference87 articles.

1. Anenberg, S. C., West, J. J., Yu, H., Chin, M., Schulz, M., Bergmann, D., Bey, I., Bian, H., Diehl, T., Fiore, A., Hess, P., Marmer, E., Montanaro, V., Park, R., Shindell, D., Takemura, T., and Dentener, F.: Impacts of intercontinental transport of anthropogenic fine particulate matter on human mortality, Air Qual. Atmos. Hlth., 7, 369–379, https://doi.org/10.1007/s11869-014-0248-9, 2014.

2. Brauer, M., Amann, M., Burnett, R. T., Cohen, A., Dentener, F., Ezzati, M., Henderson, S. B., Krzyzanowski, M., Martin, R. V, Van Dingenen, R., van Donkelaar, A., and Thurston, G. D.: Exposure assessment for estimation of the global burden of disease attributable to outdoor air pollution, Environ. Sci. Technol., 46, 652–60, https://doi.org/10.1021/es2025752, 2012.

3. Burnett, R. T., Arden Pope, C., Ezzati, M., Olives, C., Lim, S. S., Mehta, S., Shin, H. H., Singh, G., Hubbell, B., Brauer, M., Ross Anderson, H., Smith, K. R., Balmes, J. R., Bruce, N. G., Kan, H., Laden, F., Prüss-Ustün, A., Turner, M. C., Gapstur, S. M., Diver, W. R., and Cohen, A.: An integrated risk function for estimating the global burden of disease attributable to ambient fine particulate matter exposure, Environ. Health Persp., 122, 397–403, https://doi.org/10.1289/ehp.1307049, 2014.

4. CESM: CESM Models, available at: http://www.cesm.ucar.edu/models/cesm1.2/, last access: 4 May 2020.

5. Cooper, O. R., Langford, A. O., Parrish, D. D., and Fahey, D. W.: Challenges of a lowered U. S. ozone standard, Science, 348, 1096–1097, 2015.

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3